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Low soil fertility can constrain the paddy red rice yield. One 

of the efforts to increase paddy red rice production at the Tidal 

swamp area is using iron toxicity tolerant varieties. The 

objectives of this research were (i) to evaluate the agronomic 

responses of red paddy rice to low nutrient supply to 

determine the sensitive character and (ii) to identify the 

tolerant and nutrient-efficient variety under low nutrient 

supply in a tidal swamp area. The experiment was conducted 

at Tidal Swamp Area Type B, Telang Sari Village, Banyuasin 

District, South Sumatra Province. The experimental design 

was Split Plot with five replications. Nutrient supply was the 

main plot, and the Varieties (Inpara 7; Inpago 7, Aek 

Sibundong, and Telang Sari) were the subplot. The nutrient 

supply treatments were H1: standard fertilizer rate and H2: 

low nutrient supply, which is 30% of the standard rate. The 

results showed that Inpago 7 and Inpara 7 were potential 

varieties at low nutrient supply. The sensitive characteristics 

of the varieties evaluated were chlorophyll content, number 

of tillers, grain weight, and percentage of empty grain for 

growth and production characters. 
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Introduction 

Recent developments have led to suboptimal land use as a substitute for marginal land 

converted for non-agricultural purposes. The suboptimal land area in Indonesia is estimated at 

123.1 million ha of dry land and 33.4 million ha of swamp land. Based on the existing swamp 

area, 20.1 million ha (60.2%) is tidal land1,2. The main obstacles faced in cultivating rice plants 

in low tides are the water system that is still not controlled, the high content of Fe elements, 

and the availability of nutrients3,4. 
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Red rice plant growth was inhibited in soil types with a pH of less than 5.6, mainly due to 

the lack of macro elements and the toxicity of Al and Fe. Fe poisoning is a complex 

physiological symptom caused by physical conditions, nutrients, physiological properties, and 

plant growth medium containing excessive Fe5. The solubility of iron from Fe+3 to Fe+2 ions 

can potentially cause poisoning in rice and reduce production by an average of 60%6,7. 

Meanwhile, one way to overcome problems on marginal land is to use plants that are tolerant 

of environmental stress and are nutrient efficient8.   

Nutrient-efficient plant varieties can produce higher yields in soil conditions with limited 

nutrient content than other varieties9,10. Selection of nutrient-efficient plant varieties on 

marginal land can be made by comparing yields under low and optimum (normal) nutrient 

conditions11,12. Varieties with the slightest reduction in yield under nutrient-deficient conditions 

compared to optimum conditions are considered tolerant varieties and carry nutrient-efficient 

characteristics10,13,14. The nutrient uptake by roots is an essential factor that determines nutrient 

efficiency when planted in media nutrient-deficient 15,16. 

This study aims to evaluate the agronomic response of red rice at low nutrient supply to 

obtain the most sensitive characteristics and to identify tolerant and nutrient-efficient varieties 

in low nutrient supply conditions.. 

Method 
The study was conducted in tidal land of Type B, Telang Sari Village, Tanjung Lago 

District, Banyuasin Regency, South Sumatra, with a Split Plot Design with five replications and 

ten plant samples. The main plot (main plot) of the Red Rice variety consisted of the Inpara 7, 

Inpago 7, Aek Sibundong, and Telang Sari varieties. At the same time, the sub-plots were the 

nutrient supply standard for fertilization (H1: 100% with the standard 300 kg fertilization rate 

ha-1Urea, 100 kg ha-1SP36, 50 kg ha-1KCl) and low nutrient supply (H2: 30% standard dose 

of Urea, SP36, and KCl fertilization). 

The soil used has pH-H2O 4.6, pH-KCl 4.00, C organic 4.78%, total nitrogen (N) 0.45%, 

P total 31.20 mg 100g-1P2O5, K total 13.28 mg 100g-1K2O, Ca 3.57 me100g -1, Fe 345.67 

ppm, H 0.48 me100g -1 soil, CEC 30.45 me100g -1, texture clay 28.15%, Sand 9.35%, Dust 

62.35%, Al-dd 7.25 me100g -1 and Na 12.75 me100g -1. 

Red rice seeds were planted using the table system (direct seed sowing) on plots measuring 

3 x 2 m, with a distance between plots of 1 m. The number of research plots is 40 plots. 

Maintenance of pests and diseases is carried out chemically using pesticides, the research area 

is fenced with plastic, and traps are installed to avoid rats. Harvesting is done after 80% of the 

grains on the panicles have turned yellow. 

Observations were made, including plant height (cm), chlorophyll content (by immersion 

method), the total number of tillers and productive tillers, Fe content in roots and the crown 

(using Atomic Absorbent Spectro (AAS), root dry weight, shoot dry weight, the weight of grain 

per clump, the weight of grain per plot and percentage of empty grain. The data were analyzed 

for variance with the F test to determine whether the treatment affected the observed variables; 

if it was real, it was continued with the BNJ test at α = 5 %. 

Results and Discussion 
The results of variance (Table 1) showed that the nutrient supply treatment in several 

varieties of Red Rice had a significant to a very significant effect on the observed variables, 

including plant height, total tiller number, number of productive tillers, chlorophyll content, 

root Fe content, crown Fe content, and dry weight. 
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Table 1. The results of the variance of the influence of varieties and the treatment of nutrient 

supply on the observed variables 

Observed variables Fcount 

 Main tile Subsidiary tile Interaction 

Plant height 62.54** 79.46** 3.50* 

Root Fe content 61.11** 130.70** 13.33** 

Crown Fe content 64.43** 125.03** 13.39** 

Chlorophyll Content 639.80** 15.32**  1.48tn 

Number of productive tillers 81.06** 104.28**  2.49tn 

Number of tillers 88.41* 84.24** 1.17tn 

Grain weight per clump 312.85** 142.72** 4.39* 

Percentage of empty grain per clump 75.04** 9.28** 1.02tn 

Grain weight per plot 130.30** 44.52** 1.35 tn 

F table 5% 7.71 3.01 3.01 

F table 1% 71.2 4.72 4.72 
Note:  tn = not significantly different, * = significantly different, ** =  very significantly different 

 

Plant Height, Number of Tillers (Total and Productive), and Chlorophyll Content 

Based on observations of plant height in the nutrient supply treatment in Table 2, data were 

obtained on the decrease in plant height at low nutrient supply (H2), especially the Telang Sari 

variety compared to the Inpara 7, Inpago7 and Aek Sibundong varieties. The plant crown is a 

part that is sensitive to low nutrient conditions. Limited nutrient supply can inhibit plant growth, 

and the varieties generally planted also have plant height; leaf chlorophyll is very significant at 

low nutrient conditions (H2) except for Inpara 7 and Inpago 7; the decrease is not significant 

(Table 2). Limited nutrient supply causes plants to lack nutrients which results in disruption of 

plant growth; the lack of nutrient supply resulted in a decrease in plant height, plant dry weight, 

and leaf chlorophyll content17-20.  

Tidal land, where the research location is often submerged (due to high tides), also affects 

the decrease in chlorophyll content due to the increase in Fe nutrient tides which causes the 

absorption of macronutrients to be disrupted by plants. Iron toxicity in lowland rice has been 

associated with the reduction of Fe to its 2+ form for uptake by crop plants21. Furthermore, the 

effects of deficiency and excess of zinc on morphophysiological traits have revealed cross talk 

between micro- and macronutrients, leading to variations in macroelement concentrations, 

including reduced levels of Fe in certain conditions22. There was a decrease in the amount of 

chlorophyll in plants under submerged stress23-25. A high chlorophyll content would maintain a 

high rate of photosynthesis during the seed-filling stage so that the resulting assimilation 

increases26,27. 

Table 2 shows that the number of total tillers and productive tillers decreased with the 

treatment of limited nutrient supply. Limited nutrient supply (H2) gave the total number of 

tillers and productivity ranged from 15.20 – 24.20 and 14.20 – 23.60, respectively. The Inpara 

7 and Inpago 7 varieties had more productive tillers, and fewer tillers decreased in conditions 

of low (limited) nutrient supply, indicating that both varieties were tolerant and efficient 

compared to the Telang Sari variety. Based on the research results, the nutrient supply affects 

growth during vegetative growth, ultimately affecting crop yields28,29. The number of tillers 

indicates red rice plant performance on efficiency and tolerance at high Fe conditions6,30. 

Additionally, the omission of nitrogen and phosphorus has been reported to reduce the total 

number of tillers in rice31. This decrease in tiller number has been linked to the death of some 

tillers due to their failure in competition for light and nutrients32. Furthermore, the content of 

endogenous growth-inhibitory hormone abscisic acid decreased, and the number of tillers per 

plant increased after double nitrogen compensation33. It has also been observed that the 

percentage of reproductive tillers is a very plastic trait, depending on the growing conditions34. 
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Table 2. Plant height, total tiller number, number of productive tillers, and chlorophyll content 

of nutrient supply treatment for red rice 

Nutrient 

supply 

Varieties (V) Average 
Telang Sari Inpara 7 Inpago 7 Aek Sibundong 

…………...Plant height (cm) …………... 

H1: 100% 74.50b 83.80de 85.70e 78.00c 80.5 

H2:  30 % 65.40a 80.20c 82.00cd 73.80b 75.35 

Average 69.95a 82.00bc 83.85c 75.90b  

…………...Total Number of Tillers (Till)…………….. 

H1: 100% 19.20b 26.40e 24.60cd 23.40c 23.40y 

H2:  30 % 15.20a 24.20cd 21.60bc 21.00b 20.50x 

Average 17.20a 25.30c 23.10b 22.20b   

……………….Total Number of Productive Tillers (Till)…………….. 

H1: 100% 18.40b 25.20e 23.80d 23.00d 22.6y 

H2:  30 % 14.20a 23.60d 21.00c 20.00c 19.7x 

Average 16.30a 24.40d 22.40c 21.50b   

…………...Chlorophyll Content (mg g-1)…………….. 

H1: 100% 15.89b 16.93c 16.72c 17.40c 16.74y 

H2:  30 % 13.63a 15.67b 15.63b 15.90b 15.21x 

Average 14.76a 16.30b 16.18b 16.65b   
Note: Numbers in the same column and row followed by the same letter mean that they are not significantly 

different based on the 5% BNJ test 

 

Grain Weight per Clump, Grain Weight per Plot, and Percentage of Void Grain  

Grain weight per plot of red rice paddy at standard nutrient supply (H1) ranged from 3.62-

4.27 kg, while production per plot of low nutrient supply rice plant (H2) ranged from 3.02-3.9 

kg (Table 3). The weight of grain per clump and plot was related to the number of productive 

tillers, the weight of grain per clump, and the number of populations related to the ability to 

grow plants per plot, physiological mechanisms underlying the high yield potential35. There 

was a decrease in production per clump and plot due to the low nutrient supply; although it 

produced productive tillers also had a high percentage of empty grain. The element N is 

essential for plants because it is a constituent element of amino acids, proteins, nucleic acids, 

and chlorophyll which plays a role in carbohydrate synthesis as assimilate will affect generative 

growth and the formation of all components of red rice yields36. The number of tillers correlated 

with the number of panicles, which would determine grain weight per clump37. 

Table 3. Grain weight per clump, grain weight per plot, percentage of empty grain in the 

treatment of rice nutrient supply for red rice 
Nutrient 

supply 

Varieties (V) 
Average 

Telang Sari Inpara 7 Inpago 7 Aek Sibundong 

…………... Grain Weight per Clump (g) …………... 

H1: 100% 31.00b 38.87d 36.70d 33.90c 35.12y 

H2:  30 % 24.04a 34.38c 31.20b 30.02b 29.91x 

Average 27.52a 36.63d 33.95c 31.96b  

…………... Grain Weight per Plot (kg)…………….. 

H1: 100% 3.62b 4.27c 4.09c 4.00c 4.00y 

H2:  30 % 3.02a 3.90b 3.63b 3.64b 3.55x 

Average 3.32a 4.08c 3.86b 3.82b   

………………. Percentage of Empty Grain (%)…………….. 

H1: 100% 13.78b 7.38a 5.17a 9.18a 8.88x 

H2:  30 % 22.48d 16.76c 14.36bc 13.45bc 16.76y 

Average 18.13b 12.07a 9.77a 11.31a   

Note: Numbers in the same column and row followed by the same letter mean that they are not significantly 

different based on the 5% BNJ test 
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The percentage of empty grain per clump of red rice ranged from 13.45 – 22.48% at low 

nutrient supply (H2), while at standard nutrient supply (H1), 5.17 to 13.78 %. There was a very 

significant effect on the percentage of empty grains per clump, where the low nutrient supply 

caused the percentage of empty grain per clump to increase (Table 3); plant growth and 

photosynthetic ability were inhibited due to low nutrient supply, which would affect panicle 

filling, but the Inpara 7 and The Inpago 7 tolerates no significant downgrade. Nitrogen is also 

required to synthesize chlorophyll, a photosynthetic pigment38. N deficiency can result in low 

photosynthetic activity. 

 

Root Fe Content, Root Fe Content, Root Dry Weight, and Root Dry Weight 

Table 4 shows that the tolerant varieties, namely Inpara 7 and Inpago 7 varieties at low 

nutrient supply, experienced a slight decrease in dry weight. In contrast, for those with 

susceptible varieties at low nutrient supply, a decrease in dry weight (root dry weight and shoot 

dry weight) was more significant, ranging from 3.69 – 5.04 g and 10.53 – 14.71 g. The tolerant 

varieties will carry out more photosynthesis and can produce more significant dry matter39,40. 

The soil N, P, and K nutrient uptake significantly increased crown dry weight41. 

Tidal lands often experience submerged stress; therefore, the low nutrient supply affects 

the dry weight of red rice plants because the increase in Fe nutrients affects the availability of 

macronutrients, but for tolerant and nutrient-efficient varieties, this does not affect much. The 

rice varieties have elongated properties during submersion, so food reserves are reduced and 

affect dry weight so that sufficient nutrients are needed42,43. Susceptible varieties will 

experience physiological disturbances due to inundation, affecting growth in both the 

vegetative and generative phases44. 

Table 4. Crown Fe content, root Fe content, root dry weight, and shoot dry weight in red rice 

nutrient supply treatment 

Nutrient 

supply 

Varieties (V) Average 
Telang Sari Inpara 7 Inpago 7 Aek Sibundong 

…………... Crown Fe Content (mg g-1) …………... 

H1: 100% 4.14d 2.18b 2.88c 1.73a 2.73x 

H2:  30 % 4.88e 2.70bc 3.62d 3.59d 3.70 y 

Average 4.51c 2.44a 3.25b 2.66a   

…………... Root Fe Content (mg g-1)…………….. 

H1: 100% 3.81b 5.96 4.90cd 4.24c 4.73y 

H2:  30 % 2.00a 5.18 4.56cd 3.99b 3.93x 

Average 2.91a 5.57c 4.73b 4.12b   

………………. Root Dry Weight (g)…………….. 

H1: 100% 4.48b 6.31c 6.02c 4.63b 5.36y 

H2:  30 % 3.69a 5.04b 4.82b 4.18a 4.43x 

Average 4.48b 6.31c 6.02c 4.63b 5.36y 

…………... Shoot Dry Weight (g)…………….. 

H1: 100% 12.07b 14.55d 15.78d 13.07bc 13.87 

H2:  30 % 10.53a 13.45c 14.71d 11.49a 12.55 

Average 11.30a 14.00b 15.25b 12.28a   
Note: Numbers in the same column and row followed by the same letter mean that they are not significantly 

different based on the 5% BNJ test 
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Fig 1. Relationship of root Fe content with grain weight per red rice plant plot 

 

Low nutrient supply also affects the absorption of Fe levels in the roots and canopy (Table 

4); tolerant varieties have higher levels of Fe absorbed by roots than susceptible varieties, as 

well as the levels of Fe in the crown for sensitive varieties will absorb more Fe. in the canopy 

compared to varieties that are tolerant and nutrient efficient, both at standard nutrient supply 

and low nutrient supply. The Fe content of roots and plant crowns determines the potential 

(tolerant) varieties for plants in the tides. 

Fe content in plant tissue planted on tidal land determines the efficiency of nutrient 

absorption to determine the tolerance of varieties. The higher the level of Fe absorbed by the 

roots (R2 = 0.7871), the weight of grain per plot produced by red rice plants was greater (Fig 

1), while the higher the entry of Fe content into the canopy tissue (R2 = 0.805) had a negative 

correlation with the weight of grain per plot (Fig 2). On the other hand, the higher the absorption 

of excessive Fe in the plant canopy, the correlation with the percentage of empty grain (Fig 3). 

According to Zhao et al45, increased Fe2+ solubility can inhibit root growth and interfere with 

nutrient uptake. The higher levels of Fe enter the plant canopy tissue, it will cause inhibition of 

plant growth. Furthermore, Boussadia et al38 explained that the greater the absorption of 

macronutrients by the roots, the higher the photosynthetic ability and the supply of 

photosynthate for grain development. 

 
Fig 2. Relationship between crown Fe content and grain weight per plot of red rice plants 
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Fig 3. Correlation between crown Fe content and percentage of empty grain in red rice plants 

Conclusion 

Red rice varieties have different responses to low nutrient supply; based on all the 

characters evaluated, Inpara 7 and Inpago 7 are considered the most tolerant and nutrient-

efficient, while Telang Sari is the most susceptible. Red rice's sensitive characteristics can be 

used as characters evaluated on tidal land for tolerant varieties and nutrient efficiency. 
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