Comparing neural network with linear Regression for stock market prediction
DOI:
https://doi.org/10.31763/businta.v7i1.621Keywords:
neural network, linear regression, stock market, predictionAbstract
There are both gains and losses possible in stock market investing. Brokerage firms' stock investments carry a higher risk of loss since their stock prices are not being tracked or analyzed, which might be problematic for businesses seeking investors or individuals. Thanks to progress in information and communication technologies, investors may now easily collect and analyze stock market data to determine whether to buy or sell. Implementing machine learning algorithms in data mining to obtain information close to the truth from the desired objective will make it easier for an individual or group of investors to make stock trades. In this study, we test hypotheses on the performance of a financial services firm's stock using various machine learning and regression techniques. The relative error for the neural network method is only 0.72 percentage points, while it is 0.78 percentage points for the Linear Regression. More training cycles must be applied to the Algortima neural network to achieve more accurate results.
References
J. Y. Campbell and L. M. Viceira, “Strategic Asset Allocation.” Oxford University PressOxford, pp. 381-420, 2002, doi: 10.1093/0198296940.001.0001.
M. Yusuf, M. Rahmani, A. Fakultaspascasarjana, and U. A. Banjarmasin, “Sharia Law Analysis of Binary Option,” Syariah J. Huk. dan Pemikir., vol. 22, no. 2, pp. 141–149, Dec. 2022, Accessed: Dec. 21, 2022. [Online]. Available: https://jurnal.uin-antasari.ac.id/index.php/syariah/article/view/6454.
R. Chaysiri and C. Ngauv, “Prediction of Closing Stock Prices Using the Artificial Neural Network in the Market for Alternative Investment (MAI) of the Stock Exchange of Thailand (SET),” in Integrated Uncertainty in Knowledge Modelling and Decision Making, Thammasat University, 2020, pp. 335–345, doi: 10.1007/978-3-030-62509-2_28.
A. R. Admati, “A Skeptical View of Financialized Corporate Governance,” J. Econ. Perspect., vol. 31, no. 3, pp. 131–150, Aug. 2017, doi: 10.1257/jep.31.3.131.
H. Grove and M. Clouse, “Financial and Non-Financial Fraud Risk Assessment,” J. Forensic Investig. Account., vol. 12, no. 3, p. 2020, 2020. [Online]. Available at: http://web.nacva.com.s3.amazonaws.com/JFIA/Issues/JFIA-2020-No3-3.pdf.
D. Maulud and A. M. Abdulazeez, “A Review on Linear Regression Comprehensive in Machine Learning,” J. Appl. Sci. Technol. Trends, vol. 1, no. 4, pp. 140–147, 2020, doi: 10.38094/jastt1457.
A. Sharma, D. Bhuriya, and U. Singh, “Survey of stock market prediction using machine learning approach,” in 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA), Apr. 2017, pp. 506–509, doi: 10.1109/ICECA.2017.8212715.
B. M. Henrique, V. A. Sobreiro, and H. Kimura, “Stock price prediction using support vector regression on daily and up to the minute prices,” J. Financ. Data Sci., vol. 4, no. 3, pp. 183–201, Sep. 2018, doi: 10.1016/j.jfds.2018.04.003.
Ö. Ican and T. B. Çelik, “Stock Market Prediction Performance of Neural Networks: A Literature Review,” Int. J. Econ. Financ., vol. 9, no. 11, p. 100, Oct. 2017, doi: 10.5539/ijef.v9n11p100.
M. F. Masouleh and A. Bagheri, “Forecasting Stock Exchange Data using Group Method of Data Handling Neural Network Approach,” Knowl. Eng. Data Sci., vol. 4, no. 1, p. 1, Aug. 2021, doi: 10.17977/um018v4i12021p1-13.
Y.-G. Song, Y.-L. Zhou, and R.-J. Han, “Neural networks for stock price prediction,” arXiv Prepr. arXiv1805.11317, pp. 1-13, 2018. [Online]. Available at: https://arxiv.org/abs/1805.11317.
S. Sohangir, D. Wang, A. Pomeranets, and T. M. Khoshgoftaar, “Big Data: Deep Learning for financial sentiment analysis,” J. Big Data, vol. 5, no. 1, p. 3, Dec. 2018, doi: 10.1186/s40537-017-0111-6.
A. Azhari, A. Susanto, A. Pranolo, and Y. Mao, “Neural Network Classification of Brainwave Alpha Signals in Cognitive Activities,” Knowl. Eng. Data Sci., vol. 2, no. 2, p. 47, 2019, doi: 10.17977/um018v2i22019p47-57.
E. Vocaturo and P. Veltri, “On the use of Networks in Biomedicine,” Procedia Comput. Sci., vol. 110, pp. 498–503, Jan. 2017, doi: 10.1016/j.procs.2017.06.132.
A. Pyataeva and A. Dzyuba, “Artificial neural network technology for lips reading,” E3S Web Conf., vol. 333, p. 01009, Dec. 2021, doi: 10.1051/e3sconf/202133301009.
A. P. Wibawa, W. Lestari, A. B. P. Utama, I. T. Saputra, and Z. N. Izdihar, “Multilayer Perceptron untuk Prediksi Sessions pada Sebuah Website Journal Elektronik,” Indones. J. Data Sci., vol. 1, no. 3, Dec. 2020, doi: 10.33096/ijodas.v1i3.15.
C. Renggli, L. Rimanic, N. M. Gürel, B. Karlaš, W. Wu, and C. Zhang, “A data quality-driven view of mlops,” arXiv Prepr. arXiv2102.07750, pp. 1-12, 2021. [Online]. Available at: https://arxiv.org/abs/2102.07750.
J. Gauthier, Q. V. Wu, and T. A. Gooley, “Cubic splines to model relationships between continuous variables and outcomes: a guide for clinicians,” Bone Marrow Transplant., vol. 55, no. 4, pp. 675–680, Apr. 2020, doi: 10.1038/s41409-019-0679-x.
V. Stanev et al., “Machine learning modeling of superconducting critical temperature,” npj Comput. Mater., vol. 4, no. 1, p. 29, Jun. 2018, doi: 10.1038/s41524-018-0085-8.
J. Santoso, E. I. Setiawan, F. X. Ferdinandus, G. Gunawan, and L. Hernandez, “Indonesian Language Term Extraction using Multi-Task Neural Network,” Knowl. Eng. Data Sci., vol. 5, no. 2, p. 160, Dec. 2022, doi: 10.17977/um018v5i22022p160-167
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Fachrul kurniawan, Yunifa Miftachul Arif, Fresy Nugroho, Mohammed Ikhlayel
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.