Knowledge graph completion for scholarly knowledge graph
DOI:
https://doi.org/10.31763/businta.v8i2.657Keywords:
Knowledge graph , Scholarly knowledge graph , CompletionAbstract
Scholarly knowledge graph is a knowledge graph that is used to represent knowledge contained in scientific publication documents. The information we can find in a scientific publication document is as follows: author, institution, name of journal/conference, and research topic. A knowledge graph that has been built is usually still not perfect. Some incomplete information may be found. To add the missing information, we can use knowledge graph completion, which is a method for finding missing or incorrect relationships to improve the quality of a knowledge graph. Knowledge graph completion can be carried out on a scholarly knowledge graph by adding new entities and relationships to produce further information in the scholarly knowledge graph. The data added to the scholarly knowledge graph are only other papers of first author entity, the research field of first author entity, and a description of the conference/journal entity. The result shows that the scholarly knowledge graph was completed by adding 81% correct data for other papers of first author entity, 80.3% correct data for the research field of first author entity, and 53.9% correct data for the description of the conference/journal.
References
C. Peng, F. Xia, M. Naseriparsa, and F. Osborne, Knowledge Graphs: Opportunities and Challenges, vol. 56, no. 11. Springer Netherlands, 2023, doi: 10.1007/s10462-023-10465-9.
S. Choudhary, T. Luthra, A. Mittal, and R. Singh, “A Survey of Knowledge Graph Embedding and Their Applications,” p. 11, 2021. [Online]. Available at: https://arxiv.org/abs/2107.07842.
K. Wiharja, J. Z. Pan, M. J. Kollingbaum, and Y. Deng, “Schema aware iterative Knowledge Graph completion,” J. Web Semant., vol. 65, 2020, doi: 10.1016/j.websem.2020.100616.
M. Zamini, H. Reza, and M. Rabiei, “A Review of Knowledge Graph Completion,” Inf., vol. 13, no. 8, pp. 1–19, 2022, doi: 10.3390/info13080396.
A. Hogan et al., “Knowledge graphs,” ACM Comput. Surv., vol. 54, no. 4, 2021, doi: 10.1145/3447772.
D. Fensel et al., “Introduction: What Is a Knowledge Graph?,” Knowl. Graphs, pp. 1–10, 2020, doi: 10.1007/978-3-030-37439-6_1.
B. Zhang, J. Zhu, and H. Su, “Toward the third generation artificial intelligence,” Sci. China Inf. Sci., vol. 66, no. 2, pp. 1–19, 2023, doi: 10.1007/s11432-021-3449-x.
M. Jovanovic, M. Campbell, and M. Campbell, “Connecting AI: Merging Large Language Models and Knowledge Graph,” Computer (Long. Beach. Calif)., vol. 56, no. 11, pp. 103–108, 2023, doi: 10.1109/MC.2023.3305206.
K. R. S. Wiharja, D. T. Murdiansyah, M. Z. Romdlony, T. Ramdhani, and M. R. Gandidi, “A Questions Answering System on Hadith Knowledge Graph,” J. ICT Res. Appl., vol. 16, no. 2, pp. 184–196, 2022, doi: 10.5614/itbj.ict.res.appl.2022.16.2.6.
I. Mondal, Y. Hou, and C. Jochim, “End-to-End NLP Knowledge Graph Construction,” Find. Assoc. Comput. Linguist. ACL-IJCNLP 2021, pp. 1885–1895, 2021. [Online]. Available at: https://arxiv.org/abs/2106.01167.
I. Muhammad, A. Kearney, C. Gamble, F. Coenen, and P. Williamson, “Open Information Extraction for Knowledge Graph Construction,” Commun. Comput. Inf. Sci., vol. 1285 CCIS, pp. 103–113, 2020, doi: 10.1007/978-3-030-59028-4_10.
D. Dessì, F. Osborne, D. Reforgiato Recupero, D. Buscaldi, E. Motta, and H. Sack, “AI-KG: An Automatically Generated Knowledge Graph of Artificial Intelligence,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12507 LNCS, pp. 127–143, 2020, doi: 10.1007/978-3-030-62466-8_9.
S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu, “A Survey on Knowledge Graphs: Representation, Acquisition, and Applications,” IEEE Trans. Neural Networks Learn. Syst., vol. 33, no. 2, pp. 494–514, 2022, doi: 10.1109/TNNLS.2021.3070843.
A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka, and T. M. Mitchell, “Toward an Architecture for Never-Ending Language Learning,” in Proceedings of the 24th AAAI Conference on Artificial Intelligence, AAAI 2010, 2010, pp. 1306–1313, doi: 10.1609/aaai.v24i1.7519.
D. Dessí, F. Osborne, D. Reforgiato Recupero, D. Buscaldi, and E. Motta, “SCICERO: A deep learning and NLP approach for generating scientific knowledge graphs in the computer science domain,” Knowledge-Based Syst., vol. 258, pp. 1–41, 2022, doi: 10.1016/j.knosys.2022.109945.
R. Clancy, I. F. Ilyas, J. Lin, and D. R. Cheriton, “Knowledge Graph Construction from Unstructured Text with Applications to Fact Verification and Beyond,” Proc. Second Work. Fact Extr. Verif., pp. 39–46, 2019, doi: 10.18653/v1/D19-6607.
D. Flocco et al., “An Analysis of COVID-19 Knowledge Graph Construction and Applications,” Proc. - 2021 IEEE Int. Conf. Big Data, Big Data 2021, pp. 2631–2640, 2021, doi: 10.1109/BigData52589.2021.9671479.
D. Buscaldi, D. Dessì, E. Motta, F. Osborne, and D. Reforgiato Recupero, “Mining Scholarly Publications for Scientific Knowledge Graph Construction,” Eur. Semant. Web Conf., pp. 8–12, 2019, doi: 10.1007/978-3-030-32327-1_2.
M. Nayyeri et al., “Trans4E: Link prediction on scholarly knowledge graphs,” Neurocomputing, vol. 461, pp. 530–542, 2021, doi: 10.1016/j.neucom.2021.02.100.
M. Färber and L. Ao, “The Microsoft Academic Knowledge Graph enhanced: Author name disambiguation, publication classification, and embeddings,” Quant. Sci. Stud., vol. 3, no. 1, pp. 51–98, 2022, doi: 10.1162/QSS_A_00183.
O. Irrerra, A. Manocci, P. Manghi, and G. Silvello, “A Novel Curated Scholarly Graph Connecting Textual and Data Publications,” pp. 1-24, 2023, doi: 10.1145/3597310.
F. Faheem, Z. Li, and S. Husung, “Analysis Of Potential Errors In Technical Products By Combining Knowledge Graphs With,” no. September, pp. 4–8, 2023. [Online]. Available at: https://www.researchgate.net/profile/Stephan-Husung/publication/374086951.
M. Färber, D. Lamprecht, J. Krause, L. Aung, and P. Haase, SemOpenAlex: The Scientific Landscape in 26 Billion RDF Triples, vol. 14266 LNCS. Springer Nature Switzerland, 2023, doi: 10.1007/978-3-031-47243-5_6.
M. Daquino et al., “The OpenCitations Data Model,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12507 LNCS, pp. 447–463, 2020, doi: 10.1007/978-3-030-62466-8_28.
S. Boytcheva, A. Kiryakov, and P. Gyurov, “Similarity Search in Knowledge Graphs : Vector Space Model and Graph Embedding,” Knowledge, Lang. Model., no. September, pp. 20–37, 2020. [Online]. Available at: https://lml.bas.bg/~svetla/Publications/Similarity.
C. Kemper, Beginning Neo4j. pp. 1-153, 2015, doi: 10.1007/978-1-4842-1227-1.
G. Campbell, J. Romo, and D. Plump, “The Improved GP 2 Compiler,” no. October, pp. 1-11, 2020. [Online]. Available at: https://arxiv.org/pdf/2010.03993.
D. Fernandes and J. Bernardino, “Graph databases comparison: Allegrograph, arangoDB, infinitegraph, Neo4J, and orientDB,” DATA 2018 - Proc. 7th Int. Conf. Data Sci. Technol. Appl., no. Data, pp. 373–380, 2018, doi: 10.5220/0006910203730380.
Z. Chen, Y. Wang, B. Zhao, J. Cheng, X. Zhao, and Z. Duan, “Knowledge graph completion: A review,” IEEE Access, vol. 8, pp. 192435–192456, 2020, doi: 10.1109/ACCESS.2020.3030076.
S. Verma, R. Bhatia, S. Harit, and S. Batish, “Scholarly knowledge graphs through structuring scholarly communication : a review,” Complex Intell. Syst., vol. 9, no. 1, pp. 1059–1095, 2023, doi: 10.1007/s40747-022-00806-6.
J. Liu, J. Ren, W. Zheng, L. Chi, I. Lee, and F. Xia, “Web of Scholars: A Scholar Knowledge Graph,” Proc. 43rd Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., pp. 2153–2156, 2020, doi: 10.1145/3397271.3401405.
A. Oelen, M. Y. Jaradeh, M. Stocker, and S. Auer, “Generate FAIR Literature Surveys with Scholarly Knowledge Graphs,” JCDL ’20 Proc. ACM/IEEE Jt. Conf. Digit. Libr. 2020, pp. 97–106, 2020, doi: 10.1145/3383583.3398520.
M. Färber, “The Microsoft Academic Knowledge Graph: A Linked Data Source with 8 Billion Triples of Scholarly Data,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11779 LNCS, pp. 113–129, 2019, doi: 10.1007/978-3-030-30796-7_8.
M. Y. Jaradeh, K. Singh, M. Stocker, and S. Auer, Triple Classification for Scholarly Knowledge Graph Completion, vol. 1, no. 1. Association for Computing Machinery, pp. 225 - 232, 2021, doi: 10.1145/3460210.3493582.
M. Y. Jaradeh et al., “Open research knowledge graph: Next generation infrastructure for semantic scholarly knowledge,” K-CAP 2019 - Proc. 10th Int. Conf. Knowl. Capture, pp. 243–246, 2019, doi: 10.1145/3360901.3364435.
E. Delgado López-Cózar, E. Orduña-Malea, and A. Martín-Martín, “Google scholar as a data source for research Assessment,” Springer Handbooks, pp. 95–127, 2019, doi: 10.1007/978-3-030-02511-3_4.
A. Martín-Martín, E. Orduna-Malea, M. Thelwall, and E. Delgado López-Cózar, “Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories,” J. Informetr., vol. 12, no. 4, pp. 1160–1177, 2018, doi: 10.1016/j.joi.2018.09.002.
G. Campbell, B. Courtehoute, and D. Plump, “Linear-time graph algorithms in GP 2,” Leibniz Int. Proc. Informatics, LIPIcs, vol. 139, no. 16, pp. 1–16, 2019. [Online]. Available at: https://drops.dagstuhl.de/storage/00lipics/lipics-vol139 calco2019/LIPIcs.CALCO.2019.16.
C. M. Poskitt and D. Plump, “Monadic second-order incorrectness logic for GP 2,” J. Log. Algebr. Methods Program., vol. 130, 2023, doi: 10.1016/j.jlamp.2022.100825.
X. Wang, Q. He, J. Liang, and Y. Xiao, “Language Models as Knowledge Embeddings,” IJCAI Int. Jt. Conf. Artif. Intell., pp. 2291–2297, 2022, doi: 10.24963/ijcai.2022/318.
M. Y. Jaradeh, “Thinking Outside the Graph: Scholarly Knowledge Graph Construction Leveraging Natural Language Processing,” p. 189, 2022. [Online]. Available at: https://repo.uni-hannover.de/items/6cf1b1f7-49be-42a2-9394-dd7a92a8ee1d.
T. Safavi and D. Koutra, “CODEX: A comprehensive knowledge graph completion Benchmark,” EMNLP 2020 - 2020 Conf. Empir. Methods Nat. Lang. Process. Proc. Conf., pp. 8328–8350, 2020, doi: 10.18653/v1/2020.emnlp-main.669.
P. Betz, C. Meilicke, and H. Stuckenschmidt, “Supervised Knowledge Aggregation for Knowledge Graph Completion,” Eur. Semant. Web Conf., pp. 74–92, 2022, doi: 10.1007/978-3-031-06981-9_5.
A. Khatiwada, S. Shirai, K. Srinivas, and O. Hassanzadeh, “Knowledge Graph Embeddings for Causal Relation Prediction,” CEUR Workshop Proc., vol. 3342, pp. 1-12, 2022. [Online]. Available at: https://ceur-ws.org/Vol-3342/paper-8.pdf.
K. Liang et al., “A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic, and Multimodal,” pp. 1–20, 2022. [Online]. Available at: https://ieeexplore.ieee.org/abstract/document/10577554.
M. Nayyeri, S. Vahdati, J. Lehmann, and H. S. Yazdi, “Soft Marginal TransE for Scholarly Knowledge Graph Completion,” pp. 1-10, 2019. [Online]. Available at: https://arxiv.org/abs/1904.12211.
M. Nayyeri, C. Xu, Y. Yaghoobzadeh, H. S. Yazdi, and J. Lehmann, “On the Knowledge Graph Completion Using Translation Based Embedding: The Loss Is as Important as the Score,” 2019. [Online]. Available at: https://www.researchgate.net/publication/335599514.
A. Bordes, N. Usunier, and A. Garcia-Durant, “Translating Embeddings for Modeling Multi-relational Data,” Adv. Neural Inf. Process. Syst., 2013, doi: 10.1109/NAVITEC.2014.7045139.
M. Nayyeri, C. Xu, Y. Yaghoobzadeh, H. S. Yazdi, and J. Lehmann, “Towards Understanding The Effect Of Loss Function On The Performance Of Knowledge Graph Embedding,” pp. 1-14, 2019. [Online]. Available at: https://arxiv.org/abs/1909.00519.
Ontotext, “Ontotext Refine.” [Online]. Available at: https://www.ontotext.com/products/ontotext-refine/.
B. Aldughayfiq, F. Ashfaq, N. Z. Jhanjhi, and M. Humayun, “Capturing Semantic Relationships in Electronic Health Records Using Knowledge Graphs: An Implementation Using MIMIC III Dataset and GraphDB,” Healthc., vol. 11, no. 12, 2023, doi: 10.3390/healthcare11121762.
F. Wang, A. Bundy, and X. Li, “Schema-aware Iterative Completion for Knowledge Graphs Revisited,” WWW J., pp. 1-64, 2023. [Online]. Available at: https://knowledge-representation.org/j.z.pan/pub/SICKLE2023.pdf.
H. Paulheim, “Knowledge graph refinement: A survey of approaches and evaluation methods,” Semant. Web, vol. 8, no. 3, pp. 489–508, 2017, doi: 10.3233/SW-160218.