Enhancing Lae-Lae Island sustainability: computer vision based waste detection and analysis

Authors

  • Arnold Nasir Ciputra University
  • Kasmir Syariati Ciputra University
  • Citra Suardi Ciputra University
  • David Sundoro Ciputra University
  • Reinaldo Lewis Lordianto Ciputra University

DOI:

https://doi.org/10.31763/businta.v8i2.665

Keywords:

computer vision, environmental conservation, sustainability initiatives, waste detection

Abstract

In our study, "Enhancing Lae-Lae Island Sustainability: Computer Vision-Based Waste Detection and Analysis," we investigate novel approaches to address plastic pollution challenges in coastal ecosystems, focusing on Lae-Lae Island. Through a multidisciplinary approach, we uncover valuable insights for effective waste management and environmental conservation. Spatial analysis identifies concentrated plastic pollution hotspots, offering actionable data for targeted cleanup strategies. Temporal trend analysis reveals waste accumulation patterns, facilitating adaptive waste management decisions. Furthermore, we examine the impact of environmental factors on waste density, aiding in proactive pollution mitigation. Central to our research is the evaluation of computer vision technology, which demonstrates high precision, recall, and an F1-score of approximately 87.8%. These results signify the technology's potential to revolutionize waste detection and monitoring, enabling efficient resource allocation, real-time surveillance, and rapid pollution response. In conclusion, our study provides a data-driven framework for sustainable plastic waste management on Lae-Lae Island, offering insights applicable to coastal regions worldwide. By embracing technology and innovation, we pave the way for cleaner, more resilient coastal ecosystems, underscoring the importance of proactive environmental stewardship.

References

A. Kankane and D. Kang, “Detection of Seashore Debris with Fixed Camera Images using Computer Vision and Deep learning,” in 2021 6th International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Nov. 2021, pp. 34–38, doi: 10.1109/ICIIBMS52876.2021.9651572.

A. Islam and K. Dongshik, “Marine Debris Detection Model with Custom Dataset Using Instance Segmentation,” in 2023 IEEE International Conference on Computer Vision and Machine Intelligence (CVMI), Dec. 2023, pp. 1–5, doi: 10.1109/CVMI59935.2023.10464964.

A. Khriss, A. Kerkour Elmiad, M. Badaoui, A.-E. Barkaoui, and Y. Zarhloule, “Exploring Deep Learning for Underwater Plastic Debris Detection and Monitoring,” J. Ecol. Eng., vol. 25, no. 7, pp. 58–69, Jul. 2024, doi: 10.12911/22998993/187970.

M. A. Alloghani, “Artificial Intelligence for Ocean Conservation: Sustainable Computer Vision Techniques in Marine Debris Detection and Classification,” in Signals and Communication Technology, vol. Part F1802, Springer, Cham, 2024, pp. 99–136, doi: 10.1007/978-3-031-45214-7_6.

D. Ahlers, P. Bhattacharya, P. Nowak, and U. Zölzer, “Shore Livecams: A Maritime Dataset for Deep Learning based Object Detection,” in 2023 17th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Nov. 2023, pp. 138–144, doi: 10.1109/SITIS61268.2023.00029.

A. Nazerdeylami, B. Majidi, and A. Movaghar, “Autonomous litter surveying and human activity monitoring for governance intelligence in coastal eco-cyber-physical systems,” Ocean Coast. Manag., vol. 200, p. 105478, Feb. 2021, doi: 10.1016/j.ocecoaman.2020.105478.

A. Peyvandi, B. Majidi, S. Peyvandi, J. C. Patra, and B. Moshiri, “Location-aware hazardous litter management for smart emergency governance in urban eco-cyber-physical systems,” Multimed. Tools Appl., vol. 81, no. 16, pp. 22185–22214, Jul. 2022, doi: 10.1007/s11042-021-11654-w.

R. Pfeiffer et al., “Use of UAVs and Deep Learning for Beach Litter Monitoring,” Electron., vol. 12, no. 1, p. 198, Jan. 2023, doi: 10.3390/ELECTRONICS12010198.

G. Qiao, M. Yang, and H. Wang, “A Detection Approach for Floating Debris Using Ground Images Based on Deep Learning,” Remote Sens., vol. 14, no. 17, p. 4161, Aug. 2022, doi: 10.3390/rs14174161.

Y. Mo, L. Wang, W. Hong, C. Chu, P. Li, and H. Xia, “Small-Scale Foreign Object Debris Detection Using Deep Learning and Dual Light Modes,” Appl. Sci., vol. 14, no. 5, p. 2162, Mar. 2024, doi: 10.3390/app14052162.

N. A. Zailan, M. H. Junos, K. Hasikin, A. S. B. M. Khairuddin, and U. Khairuddin, “Automated Debris Detection System Based on Computer Vision,” in Proceedings of International Technical Postgraduate Conference 2022, Dec. 2022, pp. 22–27, doi: 10.21467/proceedings.141.4.

A. E. Z. Musa, A. N. Rachman, and A. Abbas, “Waste Incineration Using Plate Materials in the Form of Drums or Iron Plates (Incinerator) on Lae-Lae Island,” Celeb. J. Community Serv., vol. 2, no. 2, pp. 33–37, May 2023, doi: 10.37531/celeb.v2i2.499.

L. You, L. You, N. Hu, L. Yang, Y. Sun, and J. Song, “Influence of Straw Incineration Sediments on Heavy Metal Accumulation in Marine Organisms,” J. Coast. Res., vol. 83, no. sp1, p. 375, May 2019, doi: 10.2112/SI83-062.1.

Z. Ouyang, “Impacts of sea pollution on marine animals,” Theor. Nat. Sci., vol. 4, no. 1, pp. 229–234, Apr. 2023, doi: 10.54254/2753-8818/4/20220556.

K. Topouzelis, A. Papakonstantinou, M. Batsaris, I. Moutzouris, S. Spondylidis, and A. Moustakas, “Towards a coastal marine litter observatory with combination of drone imagery, artificial intelligence, and citizen science,” EGU21. Copernicus Meetings, Mar. 04, 2021, doi: 10.5194/egusphere-egu21-9156.

S. Merlino, M. Locritani, U. Andriolo, G. Goncalves, L. Massetti, and M. Paterni, “Monitoring Beached Marine Litter With UAV: Advances in Detection Techniques and Citizen Science Contributions,” in 2023 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), Oct. 2023, pp. 27–31, doi: 10.1109/MetroSea58055.2023.10317588.

A. Singh, “An Introduction to Experimental and Exploratory Research,” SSRN Electron. J., Feb. pp. 1-7, 2021, doi: 10.2139/ssrn.3789360.

João Gilberto Corrêa da Silva, “Experimental research,” World J. Adv. Res. Rev., vol. 16, no. 3, pp. 239–256, Dec. 2022, doi: 10.30574/wjarr.2022.16.3.1152.

S. Webber and C. Prouse, “Experimental Design,” in International Encyclopedia of Human Geography, Elsevier, 2020, pp. 347–349, doi: 10.1016/B978-0-08-102295-5.10376-2.

D. Patel, S. Dangat, and A. Kuchekar, “Design of Experiments: A Tool for Statistical Analysis,” in Current Aspects in Pharmaceutical Research and Development Vol. 5, Book Publisher International (a part of SCIENCEDOMAIN International), 2021, pp. 75–89, doi: 10.9734/bpi/caprd/v5/15064D.

I. Faizal, Z. Anna, S. T. Utami, P. G. Mulyani, and N. P. Purba, “Baseline data of marine debris in the Indonesia beaches,” Data Br., vol. 41, p. 107871, Apr. 2022, doi: 10.1016/j.dib.2022.107871.

A. H. Pratiwi, B. Budiyono, and N. A. Y. Dewanti, “Identification Types of the Marine Debris and Factors Related them in Semarang City,” J. Presipitasi Media Komun. dan Pengemb. Tek. Lingkung., vol. 18, no. 1, pp. 64–72, Mar. 2021, doi: 10.14710/presipitasi.v18i1.64-72.

J. Gacutan, E. L. Johnston, H. Tait, W. Smith, and G. F. Clark, “Continental patterns in marine debris revealed by a decade of citizen science,” Sci. Total Environ., vol. 807, p. 150742, Feb. 2022, doi: 10.1016/j.scitotenv.2021.150742.

N. Yen, C.-S. Hu, C.-C. Chiu, and B. A. Walther, “Quantity and type of coastal debris pollution in Taiwan: A rapid assessment with trained citizen scientists using a visual estimation method,” Sci. Total Environ., vol. 822, p. 153584, May 2022, doi: 10.1016/j.scitotenv.2022.153584.

M. Bettim, A. P. Krelling, M. Di Domenico, T. O. Cornwell, and A. Turra, “Daily environmental variation influences temporal patterns of marine debris deposition along an estuarine outlet in southern Brazil,” Mar. Pollut. Bull., vol. 172, p. 112859, Nov. 2021, doi: 10.1016/j.marpolbul.2021.112859.

B. Daneshian, D. Höche, O. Ø. Knudsen, and A. W. B. Skilbred, “Effect of climatic parameters on marine atmospheric corrosion: correlation analysis of on-site sensors data,” npj Mater. Degrad., vol. 7, no. 1, p. 10, Feb. 2023, doi: 10.1038/s41529-023-00329-6.

J. M. Greer, “A sampling of environmental data, and its presentation, from a multi-role U.S. coast guard aircraft,” Corros. Rev., vol. 41, no. 1, pp. 103–113, Feb. 2023, doi: 10.1515/corrrev-2022-0038.

R. Bajaj, S. Garg, N. Kulkarni, and R. Raut, “Sea Debris Detection Using Deep Learning : Diving Deep into the Sea,” in 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), Sep. 2021, pp. 1–6, doi: 10.1109/GUCON50781.2021.9573722.

J. E. Bullard, A. Ockelford, P. O’Brien, and C. McKenna Neuman, “Preferential transport of microplastics by wind,” Atmos. Environ., vol. 245, p. 118038, Jan. 2021, doi: 10.1016/j.atmosenv.2020.118038.

H. Agarwal, B. Ahir, P. Bide, S. Jain, and H. Barot, “Minimization of Food Waste in Retail Sector using Time-Series Analysis and Object Detection Algorithm,” in 2020 International Conference for Emerging Technology (INCET), Jun. 2020, pp. 1–7, doi: 10.1109/INCET49848.2020.9154156.

P. Müller, M. Brummel, and A. Braun, “Spatial recall index for machine learning algorithms,” London Imaging Meet., vol. 2, no. 1, pp. 58–62, Sep. 2021, doi: 10.2352/issn.2694-118X.2021.LIM-58.

G. M. Farinella, M. Leo, G. G. Medioni, and M. Trivedi, “Learning and recognition for assistive computer vision,” Pattern Recognit. Lett., vol. 137, pp. 1–2, Sep. 2020, doi: 10.1016/j.patrec.2019.11.006.

Downloads

Published

2024-12-05

How to Cite

Nasir, A., Syariati, K., Suardi, C., Sundoro, D., & Lordianto, R. L. (2024). Enhancing Lae-Lae Island sustainability: computer vision based waste detection and analysis. Bulletin of Social Informatics Theory and Application, 8(2), 204–212. https://doi.org/10.31763/businta.v8i2.665

Issue

Section

Articles