Monitoring and controlling humidity and pH use of LoRa in IoT-Based hydroponic planting

Authors

  • Usman Usman Handayani University Makassar
  • Andani Achmad Handayani University Makassar
  • Yuyun Yuyun Handayani University Makassar; National Research and Innovation Agency
  • Ramdan Satra Universitas Muslim Indonesia
  • Dhimas Tribuana Universitas Muslim Indonesia
  • Siaka Konate Normal School of Technical and Vocational Education

DOI:

https://doi.org/10.31763/businta.v8i1.672

Keywords:

Hydroponics; Internet of Things, Long Range, Control Systems, Monitoring

Abstract

Indonesia, a tropical country with a growing population, has significant potential for food production but faces challenges in meeting this demand. Factors such as generation change, industrialization, and food production monopolies, as well as climate change, food security measures, and a lack of technological progress, affect productivity. Governments need to address these problems by implementing policies such as cost efficiency, supply chain management, minimum labour consumption, and effective food distribution. Food security is vital to the health and well-being of the population, and food is a vital food source to consume. Vegetables, a popular food source, are vital for health and growth. Salad, a plant used for food production, is beneficial to food production and is the main food in the modern market. Technologically speaking, food security is vital to the health and well-being of the population. Governments should focus on improving food security and ensuring that food is accessible to all. The proposed system consists of five sensors: the DHT11 sensor, the TDS meter, the humidity sensor (DS18B20), the water height sensor, and the pH meter. Data from the sensor will be stored in a cloud database via the LoRa communication network, allowing users to access data through Android applications.

References

S. Utami, D. M. Tarigan, and I. F. SYAIR, “Response of Growth Mustard Plant Pakchoy (Brassica Chinensis L.) the Composition of Plant Medium and Dosage of Npk by Verticulture,” Proceeding Int. Conf. Sustain. Agric. Nat. Resour. Manag., vol. 2, no. 01, 2018. [Online]. Available at: https://jurnal.umsu.ac.id/index.php/ICoSAaNRM/article/view/4214.

S. Gore, S. Patil, and V. Khalane, “Intelligent Farm Monitoring System using LoRa Enabled IoT,” in 2022 IEEE Bombay Section Signature Conference (IBSSC), Dec. 2022, pp. 1–6, doi: 10.1109/IBSSC56953.2022.10037261.

P. D. Prasetyo Adi, A. Mappadang, A. Wahid, S. Luhriyani, R. Jefri, and N. Nurindah, “Spreading Factor of IoT-LoRa Effect for Future Smart Agriculture,” in 2022 International Conference on Information Technology Research and Innovation (ICITRI), Nov. 2022, pp. 123–128, doi: 10.1109/ICITRI56423.2022.9970235.

A. N. Rachmawaty, S. Triyono, S. Suharyatun, and M. Telaumbanua, “Design Of A Hydroponic Cultivation System For Onion (Allium Ascalonicum L.) And Cost Analysis Simulation,” J. Tek. Pertan. Lampung (Journal Agric. Eng., vol. 8, no. 2, p. 139, Jun. 2019, doi: 10.23960/jtep-l.v8i2.139-152.

H. Pal and S. Tripathi, “A survey on IoT-based smart agriculture to reduce vegetable and fruit waste,” J. Phys. Conf. Ser., vol. 2273, no. 1, p. 012009, May 2022, doi: 10.1088/1742-6596/2273/1/012009.

S. R. Abdurahman, N. B. A. Karna, and A. I. Irawan, “IoT-Based Smart Farming Using Machine Learning For Red Spinach,” eProceedings Eng., vol. 9, no. 6, pp. 3146–3153, 2023, [Online]. Available at: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/18975.

G. Scur, A. V. D. da Silva, C. A. Mattos, and R. F. Gonçalves, “Analysis of IoT adoption for vegetable crop cultivation: Multiple case studies,” Technol. Forecast. Soc. Change, vol. 191, p. 122452, Jun. 2023, doi: 10.1016/j.techfore.2023.122452.

S. Rathod, S. Dhanan, S. S. Harsha, S. Choudhary, and S. K. P, “LoRa Technology Based Hydroponic Farm Monitoring System,” in 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), Oct. 2021, pp. 1–7, doi: 10.1109/ICOSEC51865.2021.9591729.

A. Zourmand, A. L. Kun Hing, C. Wai Hung, and M. AbdulRehman, “Internet of Things (IoT) using LoRa technology,” in 2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Jun. 2019, pp. 324–330, doi: 10.1109/I2CACIS.2019.8825008.

R. Gunawan, T. Andhika, . S., and F. Hibatulloh, “Monitoring System for Soil Moisture, Temperature, pH and Automatic Watering of Tomato Plants Based on Internet of Things,” Telekontran J. Ilm. Telekomun. Kendali dan Elektron. Terap., vol. 7, no. 1, pp. 66–78, Apr. 2019, doi: 10.34010/telekontran.v7i1.1640.

H. R. Atherton and P. Li, “Hydroponic Cultivation of Medicinal Plants—Plant Organs and Hydroponic Systems: Techniques and Trends,” Horticulturae, vol. 9, no. 3, p. 349, Mar. 2023, doi: 10.3390/horticulturae9030349.

G. Rajaseger, “Hydroponics: current trends in sustainable crop production,” Bioinformation, vol. 19, no. 9, pp. 925–938, Sep. 2023, doi: 10.6026/97320630019925.

S. Sela Saldinger, V. Rodov, D. Kenigsbuch, and A. Bar-Tal, “Hydroponic Agriculture and Microbial Safety of Vegetables: Promises, Challenges, and Solutions,” Horticulturae, vol. 9, no. 1, p. 51, Jan. 2023, doi: 10.3390/horticulturae9010051.

J. B. Campen, H. F. de Zwart, M. Al Hammadi, A. Al Shrouf, and M. Dawoud, “Climatisation of a closed greenhouse in the Middle East,” Acta Hortic., vol. 1227, no. 1227, pp. 53–60, Nov. 2018, doi: 10.17660/ActaHortic.2018.1227.6.

R. Maulana, A. De, and W. M. Sidik, “Design of an Automatic Nutrition System for Hydroponic Plants with an IoT-based NodeMCU Microcontroller,” Fidel. J. Tek. Elektro, vol. 1, no. 2, pp. 1–5, Sep. 2019, doi: 10.52005/FIDELITY.V4I2.

E. Sánchez, R. Berghage, T. Ford, F. Di Gioia, and N. Flax, “Hydroponics Systems: Calculating Nutrient Solution Concentrations Using the Two Basic Equations,” PennState Extension, pp. 1-3, 2023. [Online]. Available at: https://extension.psu.edu/hydroponics-systems-calculating-nutrient-solution-concentrations-using-the-two-basic-equations.

Widodo and E. A. Stiyawan, “Design Of Total Dissolve Solid (Tds) Measuring Using Conductivity Sensor And Temperature Sensor Ds18b20,” BEST J. Appl. Electr. Sci. Technol., vol. 2, no. 1, pp. 25–29, Aug. 2020, doi: 10.36456/best.vol2.no1.2583.

S. Ma’shumah and E. K. Pramartaningthyas, “Electrital Electrical Conductivity Control System in Pakcoy Plant based on Fuzzy Logic Control,” Indones. J. Electron. Electromed. Eng. Med. Informatics, vol. 3, no. 4, pp. 133–139, Nov. 2021, doi: 10.35882/ijeeemi.v3i4.2.

E. S.-T. Wang and M.-C. Tsai, “Effects of the perception of traceable fresh food safety and nutrition on perceived health benefits, affective commitment, and repurchase intention,” Food Qual. Prefer., vol. 78, p. 103723, Dec. 2019, doi: 10.1016/j.foodqual.2019.103723.

M. Goyal, I. Sahoo, and G. Geethakumari, “HTTP Botnet Detection in IOT Devices using Network Traffic Analysis,” in 2019 International Conference on Recent Advances in Energy-efficient Computing and Communication (ICRAECC), Mar. 2019, pp. 1–6, doi: 10.1109/ICRAECC43874.2019.8995160.

N. D. Patel and H. D. Patil, “Defining Internet of Things: A Survey,” Int. J. Manag. Technol. Eng., vol. 11, no. 1, pp. 1293–1298, 2019. [Online]. Available at: https://www.ijamtes.org/gallery/151-jan19.pdf.

A. Bahrawi, A. Resky Hasniati, and C. Author, “IOT-Based Rotating Beacon Current and Voltage Monitoring Design Using Nodemcu Via Blynk Application At International Airport in Indonesia,” IOSR J. Electr. Electron. Eng., vol. 16, no. 6, pp. 30–37, 2021. [Online]. Available at: https://www.iosrjournals.org/iosr-jeee/Papers/Vol16-Issue6/Ser-1/F1606013037.pdf.

E. Sorongan, R. Kango, and S. Suhaedi, “The Application of Energy Management Systems Using the Internet of Things to Improve the Efficiency of Electrical Energy Usage in the MSMEs Sector,” PROtek J. Ilm. Tek. Elektro, vol. 10, no. 1, p. 26, Jan. 2023, doi: 10.33387/protk.v10i1.5042.

I. Bobkov, A. Rolich, M. Denisova, and L. Voskov, “Study of LoRa Performance at 433 MHz and 868 MHz Bands Inside a Multistory Building,” in 2020 Moscow Workshop on Electronic and Networking Technologies (MWENT), Mar. 2020, pp. 1–6, doi: 10.1109/MWENT47943.2020.9067427.

C. Eklund and K. Johansson, “A comparison of energy usage between LoRa 433Mhz and LoRa 868MHz,” Jonkoping University, p. 32, 2021. [Online]. Available at: https://www.diva-portal.org/smash/get/diva2:1581948/FULLTEXT01.pdf.

L. Moiroux-Arvis, C. Cariou, and J.-P. Chanet, “Evaluation of LoRa technology in 433-MHz and 868-MHz for underground to aboveground data transmission,” Comput. Electron. Agric., vol. 194, p. 106770, Mar. 2022, doi: 10.1016/j.compag.2022.106770.

M. Daud, A. Hasibuan, R. Shobirin H, and W. K. A. Al-Ani, “Battery Charger Regulator With Fully Controlled Rectifier 15 V/5 A On Uninterruptable Power Supply,” J. Renew. Energy, Electr. Comput. Eng., vol. 3, no. 1, p. 32, Mar. 2023, doi: 10.29103/jreece.v3i1.9812.

H. Hasbullah, W. Purnama, N. P. Ardiansyah, J. Kustija, and R. Pramudita, “Training on the Design of an Automatic Faucet Water System Using Arduino for Youth in Giri Mekar Village,” J. Ilm. Pendidik. Tek. dan Kejuru., vol. 15, no. 2, p. 137, Dec. 2022, doi: 10.20961/jiptek.v15i2.67759.

P. D. P. Adi, “ZigBee Test Performance with DHT11 Temperature sensor,” Internet Things Artif. Intell. J., vol. 1, no. 1, pp. 50–62, Jan. 2021, doi: 10.31763/iota.v1i1.360.

L. Wati, D. Pratami, G. Ariswati, and D. Titisari, “Effect of Temperature on pH Meter Based on Arduino Uno With Internal Calibration,” J. Electron. Electromed. Eng. Med. Informatics, vol. 2, no. 1, pp. 23–27, Jan. 2020, doi: 10.35882/JEEEMI.V2I1.5.

Y. Irawan, A. Febriani, R. Wahyuni, and Y. Devis, “Water Quality Measurement and Filtering Tools Using Arduino Uno, PH Sensor and TDS Meter Sensor,” J. Robot. Control, vol. 2, no. 5, pp. 357–362, Sep. 2021, doi: 10.18196/jrc.25107.

M. Makhdoumi Akram, M. Ramezannezhad, A. Nikfarjam, S. Kabiri, and S. Ehyaei, “A strip‐based total dissolved solids sensor for water quality analysis,” IET Sci. Meas. Technol., vol. 16, no. 3, pp. 208–218, May 2022, doi: 10.1049/smt2.12098.

M. Hidayatullah, S. Sofyan, P. Ali Topan, T. Andriani, and N. Nurhairunnisah, “Monitoring System of Water Quality on Hydroponic Planting Media using Total Dissolved Solid (TDS) Sensor Based Arduino Uno R3,” J. ILMU Fis. | Univ. ANDALAS, vol. 14, no. 2, pp. 108–115, Aug. 2022, doi: 10.25077/jif.14.2.108-115.2022.

Widodo and R. Setiawan, “Temperature Control System on Aquascape using On-Off Control,” BEST J. Appl. Electr. Sci. Technol., vol. 3, no. 1, pp. 34–38, Mar. 2021, doi: 10.36456/best.vol3.no1.3541.

D. Derisma, A. Putra, and D. Yendri, “Designing An Automatic Microcontroller-based Drying Machine of Coffee Beans,” IPTEK J. Technol. Sci., vol. 31, no. 1, p. 11, Nov. 2019, doi: 10.12962/j20882033.v31i1.5375.

G. S. Pereira, R. C. Ramirez, E. S. Agulto, and V. B. Ella, “Performance evaluation of a water level sensor under various turbidity levels in lowland crop production systems,” IOP Conf. Ser. Earth Environ. Sci., vol. 1038, no. 1, p. 012033, Jun. 2022, doi: 10.1088/1755-1315/1038/1/012033.

R. Wahyuni, J. T. Sentana, M. Muhardi, and Y. Irawan, “Water Level Control Monitoring Based On Arduino Uno R3 Atmega 238p Using Lm016l LCD at STMIK Hang Tuah Pekanbaru,” J. Robot. Control, vol. 2, no. 4, pp. 265–269, Jul. 2021, doi: 10.18196/jrc.2489.

R. G. Wisduanto, A. Bhawiyuga, and D. P. Kartikasari, “Implementasi Sistem Akuisisi Data Sensor Pertanian Menggunakan Protokol Komunikasi LoRa,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, pp. 2201–2207, Jan. 2019. [Online]. Available at: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/4662.

S. Karim, I. M. Khamidah, and Yulianto, “Monitoring System for Hydroponic Plants Using Arduino UNO and NodeMCU,” Bul. Poltanesa, vol. 22, no. 1, pp. 75–79, Jun. 2021, doi: 10.51967/tanesa.v22i1.331.

D. Rimbano, “Environmental Accounting For Waste Processing In Siti Aisyah Hospital Lubuklinggau City,” J. Bus. Econ., vol. 24, no. 1, pp. 1–22, Apr. 2019, doi: 10.35760/eb.2019.v24i1.1852.

N. Nofriadi, D. Dahriansyah, and A. P. Lubus, “Water PH Measuring System for Hydroponic Plants,” Arcitech J. Comput. Sci. Artif. Intell., vol. 2, no. 2, p. 77, Dec. 2022, doi: 10.29240/arcitech.v2i2.6229.

K. Garindaru, A. A. Muayyadi, and G. B. Satrya, “Monitoring and Controlling IoT-Based Floating Raft Hydroponic Plants,” eProceedings Eng., vol. 9, no. 6, 2022. [Online]. Available at: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/19007.

P. W. Ciptadi and R. H. Hardyanto, “Application of IoT Technology to Hydroponic Plants using Arduino and Blynk Android,” J. Din. Inform., vol. 7, no. 2, pp. 29–40, 2018, [Online]. Available at: https://jdi.upy.ac.id/index.php/jdi/article/view/5.

M. Berndtsson, J. Hansson, B. Olsson, and B. Lundell, Thesis Projects. London: Springer London, pp. 1-158, 2008, doi: 10.1007/978-1-84800-009-4.

Downloads

Published

2024-05-06

How to Cite

Usman, U., Achmad, A., Yuyun, Y., Satra, R., Tribuana, D., & Konate, S. . (2024). Monitoring and controlling humidity and pH use of LoRa in IoT-Based hydroponic planting. Bulletin of Social Informatics Theory and Application, 8(1), 107–123. https://doi.org/10.31763/businta.v8i1.672