Sentiment analysis of Indonesian government policy in the era of social commerce: public perception and reaction
DOI:
https://doi.org/10.31763/businta.v8i2.710Keywords:
Sentiment analysis , Public perspective , Social commerceAbstract
This research explores public sentiment towards the Indonesian government’s policies in the era of social commerce, based on Minister of Trade Regulation No. 31 of 2023. Sentiment analysis was conducted on a dataset comprising 1013 tweets on Twitter, employing various machine learning algorithms, including Naïve Bayes, Logistic Regression, Random Forest, SVM, and KNN. The results reveal that the Support Vector Machine (SVM) algorithm achieved the highest accuracy rate of 87%, outperforming other algorithms. Analyzing public sentiment towards the mentioned government policies, positive sentiment accounted for 20.2%, while negative sentiment reached 79.8%. This suggests that the policies, as outlined in the regulation, did not elicit a positive response from the public. Recommendations for future research include expanding the dataset and incorporating diverse data sources beyond Twitter for enhanced accuracy. This study contributes valuable insights into public sentiment analysis, particularly in the context of social commerce policies, providing a foundation for further investigations and policy adjustments.
References
N. Zhao and H. Li, “How can social commerce be boosted? The impact of consumer behaviors on the information dissemination mechanism in a social commerce network,” Electron. Commer. Res., vol. 20, no. 4, pp. 833–856, 2019, doi: 10.1007/s10660-018-09326-3.
Y. K. Dwivedi et al., “Setting the future of digital and social media marketing research: Perspectives and research propositions,” Int. J. Inf. Manage., vol. 59, p. 102168, Aug. 2021, doi: 10.1016/j.ijinfomgt.2020.102168.
Adedoyin Tolulope Oyewole, Bisola Beatrice Oguejiofor, Nkechi Emmanuella Eneh, Chidiogo Uzoamaka Akpuokwe, and Seun Solomon Bakare, “Data Privacy Laws and Their Impact on Financial Technology Companies: a Review,” Comput. Sci. IT Res. J., vol. 5, no. 3, pp. 628–650, 2024, doi: 10.51594/csitrj.v5i3.911.
M. Mattila, M. Yrjölä, and P. Hautamäki, “Digital transformation of business-to-business sales: what needs to be unlearned?,” J. Pers. Sell. Sales Manag., vol. 41, no. 2, pp. 113–129, 2021, doi: 10.1080/08853134.2021.1916396.
Minister Of Trade Regulation Of The Republic Of Indonesia Number 31 Of 2023 Concerning Business Licenses, Advertising, Guidance, And Supervision Of Business Players In Trade Through Electronic Systems, no. 3. Indonesia, pp. 31-41, 2023. [Online]. Available at: https://jdih.kemendag.go.id/peraturan/peraturan-menteri-perdagangan-nomor-31-tahun-2023-tentang-perizinan-berusaha-periklanan-pembinaan-dan-pengawasan-pelaku-usaha-dalam-perdagangan-melalui-sistem-elektronik.
H. N. Utami, E. Alamanos, and S. Kuznesof, “‘A social justice logic’: how digital commerce enables value co-creation at the bottom of the pyramid,” J. Mark. Manag., vol. 37, no. 9–10, pp. 816–855, 2021, doi: 10.1080/0267257X.2021.1908399.
E. Terryn and E. Van Gool, “The Role of European Consumer Regulation in Shaping the Environmental Impact of e-Commerce,” SSRN Electron. J., no. November, 2020, doi: 10.2139/ssrn.3732911.
E. Sørensen and J. Torfing, “Radical and disruptive answers to downstream problems in collaborative governance?,” Public Manag. Rev., vol. 23, no. 11, pp. 1590–1611, 2021, doi: 10.1080/14719037.2021.1879914.
Bahrawi, “Sentiment Analysis Using Random Forest Algorithm-,” J. Inf. Technol. ITS Util., vol. 2, no. 2, pp. 29–33, 2019, doi: 10.30818/jitu.2.2.2695.
E. Michela, J. M. Rosenberg, R. Kimmons, O. Sultana, M. A. Burchfield, and T. Thomas, “‘We Are Trying to Communicate the Best We Can’: Understanding Districts’ Communication on Twitter During the COVID-19 Pandemic,” AERA Open, vol. 8, no. 1, 2022, doi: 10.1177/23328584221078542.
J. You, J. Lee, and H.-Y. Kwon, “A Complete and Fast Scraping Method for Collecting Tweets,” in 2021 IEEE International Conference on Big Data and Smart Computing (BigComp), Jan. 2021, pp. 24–27, doi: 10.1109/BigComp51126.2021.00014.
Y. S. Mehanna and M. Mahmuddin, “The Effect of Pre-processing Techniques on the Accuracy of Sentiment Analysis Using Bag-of-Concepts Text Representation,” SN Comput. Sci., vol. 2, no. 4, p. 237, Jul. 2021, doi: 10.1007/s42979-021-00453-7.
A. A. Onyekachi, “Sentiment Analysis for E-Commerce Product Reviews,” Int. J. Eng. Mod. Technol., vol. 9, no. 1, pp. 18–32, 2023. [Online]. Available at: https://iiardjournals.org/abstract.php?j=IJEMT&pn=Sentiment%20Analysis%20for%20E-Commerce.
N. Garg and K. Sharma, “Text pre-processing of multilingual for sentiment analysis based on social network data,” Int. J. Electr. Comput. Eng., vol. 12, no. 1, pp. 776–784, 2022, doi: 10.11591/ijece.v12i1.pp776-784.
A. Miftahusalam, A. F. Nuraini, A. A. Khoirunisa, and H. Pratiwi, “Comparison of Random Forest, Naïve Bayes, and Support Vector Machine Algorithms in Analyzing Twitter Sentiment Regarding Public Opinion on the Removal of Honorary Employees,” Semin. Nas. Off. Stat., vol. 2022, no. 1, pp. 563–572, 2022, doi: 10.34123/semnasoffstat.v2022i1.1410.
E. Mona Cindo, Dian Palupi Rini, “Literature Review: Classification Methods in Sentiment Analysis,” in Seminar Nasional Teknologi Komputer & Sains (SAINTEKS), 2019, pp. 66–70. [Online]. Available at: https://prosiding.seminar-id.com/index.php/sainteks/article/view/124.
X. Zou, Y. Hu, Z. Tian, and K. Shen, “Logistic Regression Model Optimization and Case Analysis,” in International Conference on Computer Science and Network Technology (ICCSNT) Logistic, 2019, pp. 135–139, doi: 10.1109/ICCSNT47585.2019.8962457.
B. Agarwal and N. Mittal, “Machine Learning Approach for Sentiment Analysis,” Springer, Cham, 2016, pp. 21–45, doi: 10.1007/978-3-319-25343-5_3.
A. Miftahusalam, A. F. Nuraini, A. A. Khoirunisa, and H. Pratiwi, “Comparison of Random Forest, Naïve Bayes, and Support Vector Machine Algorithms in Twitter Sentiment Analysis Regarding Public Opinion on the Elimination of Honorary Workers,” Semin. Nas. Off. Stat., vol. 2022, no. 1, pp. 563–572, Nov. 2022, doi: 10.34123/semnasoffstat.v2022i1.1410.
F. Sodik and I. Kharisudin, “Sentiment Analysis with SVM, Naïve Bayes, and KNN for Studying Indonesian Public Responses to the Covid-19 Pandemic on Twitter Social Media,” Prisma, vol. 4, pp. 628–634, 2021.[Online]. Available at: https://journal.unnes.ac.id/ .
V. Oktaviani, B. Warsito, H. Yasin, R. Santoso, and Suparti, “Sentiment analysis of e-commerce application in Traveloka data review on Google Play site using Naïve Bayes classifier and association method,” J. Phys. Conf. Ser., vol. 1943, no. 1, p. 012147, Jul. 2021, doi: 10.1088/1742-6596/1943/1/012147.
E. Edwin, “Government Policy Assessment Application Related To Online Operations Of Ojek During The Pandemic (Covid-19) Using The Naïve Bayes Classifier Algorithm,” J. Algoritm. Log. dan Komputasi, vol. 3, no. 2, Mar. 2021, doi: 10.30813/j-alu.v3i2.2651.
A. C. (aristin) khotimah and E. (Ema) Utami, “Comparison Naïve Bayes Classifier, K-nearest Neighbor and Support Vector Machine in the Classification of Individual on Twitter Account,” J. Tek. Inform., vol. 3, no. 3, pp. 673–680, Jun. 2022. [Online]. Available at: https://www.neliti.com/publications/497600/comparison-na%C3%AFve-bayes-classifier-k-nearest-neighbor-and-support-vector-machine.
E. Y. Boateng, J. Otoo, and D. A. Abaye, “Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review,” J. Data Anal. Inf. Process., vol. 08, no. 04, pp. 341–357, Sep. 2020, doi: 10.4236/jdaip.2020.84020.
S. A. H. Bahtiar, C. K. Dewa, and A. Luthfi, “Comparison of Naïve Bayes and Logistic Regression in Sentiment Analysis on Marketplace Reviews Using Rating-Based Labeling,” J. Inf. Syst. Informatics, vol. 5, no. 3, pp. 915–927, Aug. 2023, doi: 10.51519/journalisi.v5i3.539.
N. I. P. Munggaran and E. B. Setiawan, “DISC Personality Prediction with K-Nearest Neighbors Algorithm (KNN) Using TF-IDF and TF-Chi Square Weighting,” e-Proceeding Eng., vol. 6, no. 2, pp. 9446–9457, 2019, [Online]. Available at: https://repository.telkomuniversity.ac.id/pustaka/files/152887/jurnal_eproc/prediksi-kepribadian-disc-dengan-k-nearest-neighbors-algorithm-knn-menggunakan-pembobotan-tf-idf-dan-tf-chi-square.pdf.
F. Smarra, G. D. Di Girolamo, V. De Iuliis, A. Jain, R. Mangharam, and A. D’Innocenzo, “Data-driven switching modeling for MPC using Regression Trees and Random Forests,” Nonlinear Anal. Hybrid Syst., vol. 36, p. 100882, May 2020, doi: 10.1016/j.nahs.2020.100882.
F. Y. Pamuji and V. P. Ramadhan, “Comparison of Random Forest and Decision Tree Algorithms for Predicting Immunotheraphy Success,” J. Teknol. dan Manaj. Inform., vol. 7, no. 1, pp. 46–50, Jul. 2021, doi: 10.26905/jtmi.v7i1.5982.
P. Fremmuzar and A. Baita, “SVM Kernel Test in Sentiment Analysis of Telkomsel Services on Twitter Social Media,” Komputika J. Sist. Komput., vol. 12, no. 2, pp. 57–66, Sep. 2023, doi: 10.34010/komputika.v12i2.9460.
R. Bertolini, S. J. Finch, and R. H. Nehm, “Enhancing data pipelines for forecasting student performance: integrating feature selection with cross-validation,” Int. J. Educ. Technol. High. Educ., vol. 18, no. 1, p. 44, Dec. 2021, doi: 10.1186/s41239-021-00279-6.