Analyzing the Indonesian sentiment to rohingya refugees using IndoBERT model
DOI:
https://doi.org/10.31763/businta.v8i2.749Keywords:
Sentiment analysis, BERT , IndoBERT , Rohingya , Confusion matrixAbstract
This study aims to analyze public sentiments towards Rohingya refugees in Indonesia using the IndoBERT model. We collected sentiment data from social media platforms and news articles, followed by preprocessing techniques including tokenization, cleaning, case folding, stemming, and filtering. Sentiment labels were assigned using the InSet lexicon, and the IndoBERT model was trained with these labeled data. Our findings reveal that the predominant sentiment is negative, with 65% of the sentiments classified as negative, 20% as neutral, and 15% as positive. The model demonstrated robust performance with an accuracy of 87%, precision of 85%, recall of 83%, and an F1 score of 84%. This research addresses a gap in sentiment analysis studies related to refugee issues and provides valuable insights into public perceptions, which could inform policies and interventions aimed at improving refugee integration and support systems in Indonesia.
References
A. Hakim and Arini Nur Annisa, “Legal Governance Of Rohingya Refugee Affairs In Aceh: A Constitutional Perspective,” J. Sultan Ris. Huk. Tata Negara, vol. 2, no. 2, pp. 21–32, Feb. 2024, doi: 10.35905/sultan_htn.v2i2.7990.
M. A. Hamdi, H. Maulidia, and H. Firlana, “Phenomenon Of Asylum Seekers And Refugees Of Rohingya Ethnic In Indonesia,” J. Ilm. Kaji. Keimigrasian, vol. 6, no. 1, pp. 55–71, Aug. 2023, doi: 10.52617/jikk.v6i1.404.
A. Azis, “The Refugees Vanish: Rohingya Movement, Emergency’s Temporality and Violence of the Indonesian Humanitarian Border,” in IMISCOE Research Series, Springer, Cham, 2023, pp. 177–193, doi: 10.1007/978-3-031-25748-3_10.
M. Riza, F. Anas, A. Sukendro, I. Malik, P. Widodo, and A. A. Chandra, “Analysis of Dynamic Framework to Prevent Potential Post-Migration Conflict of Rohingya Ethnic in Aceh,” J. Law, Polit. Humanit., vol. 4, no. 6, pp. 1978–1989, Sep. 2024. [Online]. Available at: https://dinastires.org/JLPH/article/view/572.
H. Durohman, Fajar Andrian Sutisna, and Muhamad Ridho, “The Analysis of Pros and Cons Regarding the Arrival of Rohingya Refugees: Religious, Humanitarian, and Socio-Economic Implication,” J. Islam. Civiliz., vol. 5, no. 2, pp. 237–259, May 2024, doi: 10.33086/jic.v5i2.5788.
M. Wankhade, A. C. S. Rao, and C. Kulkarni, “A survey on sentiment analysis methods, applications, and challenges,” Artif. Intell. Rev. 2022 557, vol. 55, no. 7, pp. 5731–5780, Feb. 2022, doi: 10.1007/S10462-022-10144-1.
A. A. Q. Aqlan, B. Manjula, and R. Lakshman Naik, “A Study of Sentiment Analysis: Concepts, Techniques, and Challenges,” in Lecture Notes on Data Engineering and Communications Technologies, vol. 28, Springer, Singapore, 2019, pp. 147–162, doi: 10.1007/978-981-13-6459-4_16.
D. Gritsenko, M. Wijermars, and M. Kopotev, The Palgrave Handbook of Digital Russia Studies. 2020, doi: 10.1007/978-3-030-42855-6.
W. Bourequat and H. Mourad, “Sentiment Analysis Approach for Analyzing iPhone Release using Support Vector Machine,” Int. J. Adv. Data Inf. Syst., vol. 2, no. 1, pp. 36–44, Apr. 2021, doi: 10.25008/ijadis.v2i1.1216.
A. Gupta, P. Tyagi, T. Choudhury, and M. Shamoon, “Sentiment Analysis Using Support Vector Machine,” in 2019 International Conference on contemporary Computing and Informatics (IC3I), Dec. 2019, pp. 49–53, doi: 10.1109/IC3I46837.2019.9055645.
K.-X. Han, W. Chien, C.-C. Chiu, and Y.-T. Cheng, “Application of Support Vector Machine (SVM) in the Sentiment Analysis of Twitter DataSet,” Appl. Sci., vol. 10, no. 3, p. 1125, Feb. 2020, doi: 10.3390/app10031125.
D. Affianty, “The Impact Of The Rohingya Issue On Violent Extremism In Indonesia,” Universitas Muhammadiyah Jakarta, p. 23, 2019. [Online]. Available at: https://repository.umj.ac.id/8556/1/Laporan Penelitian-Dampak Isu Rohingya Terhadap Ekstremisme Kekerasan di Indonesia.pdf.
B. Rahmatullah, “Sentiment Analysis of Work From Home Implementation in Indonesia During the COVID-19 Pandemic Using IndoBERT,”, pp. 1-101, 2021. [Online]. Available at: https://repository.its.ac.id/91493/1/06111640000078-Undergraduate_Thesis.pdf.
J. Nababan, “The Role of the International Criminal Court (ICC) in Handling Crimes Against Humanity: A Case Study of the Rohingya in Myanmar (2016),” J. Univ. Komput. Indones., vol. 2, no. 2, pp. 1–13, 2018. [Online]. Available at: https://elibrary.unikom.ac.id/id/eprint/1905/13/unikom.
A. Roy Chowdhury, “An ‘un-imagined community’: the entangled genealogy of an exclusivist nationalism in Myanmar and the Rohingya refugee crisis,” Soc. Identities, vol. 26, no. 5, pp. 590–607, Sep. 2020, doi: 10.1080/13504630.2020.1782731.
V. Septia Renanda, D. Natasyafira, A. Julia Kusuma, Z. Delia Reviska, and M. Putri Winarti, “Legal Protection For The Rohingya People From The Perspective Of Human Rights And International Law,” Sibatik J. J. Ilm. Bid. Sos. Ekon. Budaya, Teknol. dan Pendidik., vol. 2, no. 1, pp. 143–152, Dec. 2022, doi: 10.54443/sibatik.v2i1.510.
H. Wahyudi and N. Niko, “Indonesian Diplomacy as a Muslim Majority Democracy in Responding to Human Rights Violations in Myanmar,” POLITEA, vol. 6, no. 1, p. 107, Jun. 2023, doi: 10.21043/politea.v6i1.20350.
A. Ligthart, C. Catal, and B. Tekinerdogan, “Systematic reviews in sentiment analysis: a tertiary study,” Artif. Intell. Rev., vol. 54, no. 7, pp. 4997–5053, Oct. 2021, doi: 10.1007/s10462-021-09973-3.
P. K. Jain, R. Pamula, and G. Srivastava, “A systematic literature review on machine learning applications for consumer sentiment analysis using online reviews,” Comput. Sci. Rev., vol. 41, p. 100413, Aug. 2021, doi: 10.1016/j.cosrev.2021.100413.
M. Liu, F. Zhou, K. Chen, and Y. Zhao, “Co-attention networks based on aspect and context for aspect-level sentiment analysis,” Knowledge-Based Syst., vol. 217, p. 106810, Apr. 2021, doi: 10.1016/j.knosys.2021.106810.
Y. Lv et al., “Aspect-level sentiment analysis using context and aspect memory network,” Neurocomputing, vol. 428, pp. 195–205, Mar. 2021, doi: 10.1016/j.neucom.2020.11.049.
F. Koto and G. Y. Rahmaningtyas, “Inset lexicon: Evaluation of a word list for Indonesian sentiment analysis in microblogs,” in 2017 International Conference on Asian Language Processing (IALP), Dec. 2017, vol. 2018-Janua, pp. 391–394, doi: 10.1109/IALP.2017.8300625.
C. Zucco, B. Calabrese, G. Agapito, P. H. Guzzi, and M. Cannataro, “Sentiment analysis for mining texts and social networks data: Methods and tools,” Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 10, no. 1, p. e1333, Jan. 2020, doi: 10.1002/WIDM.1333.
J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” in Proceedings of the 2019 Conference of the North, 2019, pp. 4171–4186, doi: 10.18653/v1/N19-1423.
F. A. Acheampong, H. Nunoo-Mensah, and W. Chen, “Transformer models for text-based emotion detection: a review of BERT-based approaches,” Artif. Intell. Rev., vol. 54, no. 8, pp. 5789–5829, Dec. 2021, doi: 10.1007/s10462-021-09958-2.
F. Koto, A. Rahimi, J. H. Lau, and T. Baldwin, “IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indonesian NLP,” in Proceedings of the 28th International Conference on Computational Linguistics, 2020, pp. 757–770, doi: 10.18653/v1/2020.coling-main.66.
W. A. Hamwi and M. M. Almustafa, “Development and integration of VGG and dense transfer-learning systems supported with diverse lung images for discovery of the Coronavirus identity,” Informatics Med. Unlocked, vol. 32, p. 101004, Jan. 2022, doi: 10.1016/j.imu.2022.101004.
D. Valero-Carreras, J. Alcaraz, and M. Landete, “Comparing two SVM models through different metrics based on the confusion matrix,” Comput. Oper. Res., vol. 152, p. 106131, Apr. 2023, doi: 10.1016/j.cor.2022.106131.
C. Tofallis, “A better measure of relative prediction accuracy for model selection and model estimation,” J. Oper. Res. Soc., vol. 66, no. 8, pp. 1352–1362, 2015, doi: 10.1057/jors.2014.103.
D. M. W. Powers, “Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation,” pp. 37–63, 2020, [Online]. Available at: http://arxiv.org/abs/2010.16061.
B. Satya, M. H. S J, M. Rahardi, and F. F. Abdulloh, “Sentiment Analysis of Review Sestyc Using Support Vector Machine, Naive Bayes, and Logistic Regression Algorithm,” in 2022 5th International Conference on Information and Communications Technology (ICOIACT), Aug. 2022, pp. 188–193, doi: 10.1109/ICOIACT55506.2022.9972046.
T. Silwattananusarn, “Data Mining and Its Applications for Knowledge Management : A Literature Review from 2007 to 2012,” Int. J. Data Min. Knowl. Manag. Process, vol. 2, no. 5, pp. 13–24, Sep. 2012, doi: 10.5121/ijdkp.2012.2502.
Lathifah, “Cross-Industry Standard Process For Data Mining (Crisp-Dm) To Find Association Patterns In Data Tracer Study Of Islamic College Graduates (Case Study: Uin Syarif Hidayatullah Jakarta) Cross-Industry Standard Process For Data Mining (Crisp-Dm) To Find Asso,” Uin Syarif Hidayatullah Jakarta, p.223, 2023, doi: 10.1109/CITSM60085.2023.10455691.
P. P. W. Suyitno, R. E. Indrajit, and M. Fauzi, “Application Of Data Mining In Handling Congestion In Jakarta,” Ikra-Ith Inform. J. Komput. dan Inform., vol. 1, no. 2, pp. 53–60, 2017. [Online]. Available at: http://journals.upi-yai.ac.id/index.php/ikraith-informatika/article/view/110.
A. Rai and S. Borah, “Study of Various Methods for Tokenization,” in Lecture Notes in Networks and Systems, vol. 137, Springer, Singapore, 2021, pp. 193–200, doi: 10.1007/978-981-15-6198-6_18.
J. A. Pamungkas, Y. Priyadi, and M. J. Alibasa, “Measurement of Similarity Between Requirement Elicitation and Requirement Specification Using Text Pre-Processing in the Cinemaloka Application,” in 2022 IEEE World AI IoT Congress (AIIoT), Jun. 2022, pp. 672–678, doi: 10.1109/AIIoT54504.2022.9817193.
A. Jabbar, S. Iqbal, M. I. Tamimy, A. Rehman, S. A. Bahaj, and T. Saba, “An Analytical Analysis of Text Stemming Methodologies in Information Retrieval and Natural Language Processing Systems,” IEEE Access, vol. 11, pp. 133681–133702, 2023, doi: 10.1109/ACCESS.2023.3332710.
V. Hananto, “Analysis of Determining Data Mining Methods for Predicting Student Graduation as a Support for Educational Efficiency Figures,” J. Ilm. SCROLL, vol. 5, no. 1, pp. 1–11, 2017, [Online]. Available at: http://repository.dinamika.ac.id/id/eprint/2122/4/.