
International Journal of Applied Business and Information System ISSN: 2597-8993
Vol 2, No. 2 September 2018 pp. 1-12 1

DOI: W: http://pubs.ascee.org/index.php/ijabis | E : info@ascee.org

Metric based framework for Testing & Evaluation of

Service-Oriented Systems
1Salisu Garba, 2Muhammad Jauharul Fuady

1Department of Mathematics and Computer Science
Sule Lamido University, Kafin Hausa, Nigeria

2Faculty of Engineering, Universitas Negeri Malang, Indonesia
1Salisu.garba@jsu.edu.ng 2jauharul@um.ac.id

I. Introduction

The persistence storms of the Internet, TCP/IP, HTTP and XML have created the circumstances

for another incarnation of SOA again. Due to the universal support for those technologies, now SOA

has the potential to have a wider, ever permanent encounter than beforehand. Service Oriented

Architecture enable flexibility, adoptability, integratability, business adaptability and the ability to

incrementally change the system, switching service providers, extending services, modifying service

providers and consumers due to loose-controlled coupling.

Essentially, beyond the technical definition, SOA is a change of paradigm, a change in the way

of thinking about information technology (IT), and the process of delivering IT (via services) from

start to end in an easier, more flexible manner, more reusable and more responsive to business

changes while providing cost efficiency as a major benefit. Service Oriented Architecture (SOA) is

devise to standardize obtainable IT resources and transformed the heterogeneous collection of

distributed, intricate systems and applications into a set-up of integrated, straightforward and flexible

IT assets.

ARTICLE INFO AB ST R ACT

Article history:

Received April 15, 2018
Revised June 20, 2018

Accepted July 15, 2018

The increase in significance of service orientation in system
development is accelerating with increase in demand for qualitative
and cost-effective systems. Service-Oriented Architecture (SOA) is
one of the established structural designs used for developing and
implementing flexible, reusable, rapid and low-cost service-oriented
systems. The established testing and evaluation methods don’t work
well for systems that are made-up of services (service-oriented
system). As a result, several testing and evaluation metrics for service-
oriented systems were proposed. However, these metrics were created
based on preceding software development approaches that offer
insufficient focus to service oriented systems thereby lacking the
efficiency to evaluate these systems. Furthermore, Lack of access to
source code also frustrates classical mutation-testing approaches,
which require seeding the code with errors. This paper discusses
different testing and evaluation metrics available for SOS and
proposed a theory-grounded framework for testing and evaluation of
service-oriented systems with the aim of decreasing cost and
increasing the quality of the SOS. Then, the proposed framework is
validated theoretically to check its usability and applicability for
testing and evaluation of SOS. The results show that the proposed
framework is able to decreasing cost and increasing the quality of the
SOS.

Copyright © 2018

Association for Scientific Computing Electronics and Engineering.

All rights reserved.

Keywords:

Service Oriented systems, SOA, Metrics,

testing, cost evaluation, quality evaluation

mailto:Salisu.garba@jsu.edu.ng
mailto:2jauharul@um.ac.id

2 International Journal of Applied Business and Information Systems ISSN: 2597-8993
 Vol 2, No. 2 pp. 1-12

 Salisu Garba et.al (Metric based framework for Testing….)

Prior to Service-oriented architecture, the Common Object Request Broker Architecture

(CORBA) and the Distributed Component Object Model (DCOM) provide similar and related

functionality. These existing approaches to service orientation, however, suffered from a few tricky

problems such as tightly coupled scenarios according to [4]. It is significant to recognize that SOA

is not a technology, but a method of software design that propose a fundamental shift in how

organizations implement systems. SOA mark the end of monolithic enterprise applications and mark

the commencement of more flexible and adoptable business process centric application.

SOA Applications are built based on services. Therefore, it is very important to understand the

word service clearly. According to [1], a service is software component that is well-defined, self-

contained, and independent on the situation or status of other services. A service is an implementation

of well-defined company functionality, consumed by clients in disparate applications or company

procedures.

Services are connect together using Web Services. However, Web services are merely a step along
a much longer road. Web Services are the composition of protocols by which Services can be
published, discovered and utilized in a technology impartial, methodology neutral, platform neutral,
and language neutral standard form.

Fig 1: The basic concept of SOA and the components of SOS

Services in SOA concentrated on conceding a schema and message-based contact alongside an

application across interfaces that are application scoped, and not constituent or object-based.

Nowadays SOA have removed one more barrier by permitting application to interconnect in an

object-model-neutral method. For example, employing a simple XML-based messaging scheme,

Java requests can implore Microsoft .NET requests or CORBA-compliant, or even COBOL,

applications.

The established testing and evaluation methods don’t work well for systems that are made-up of
services (service oriented system). As a result, several testing and evaluation metrics for service
oriented systems were proposed. However, these metrics were created based on preceding software
development approaches that offer insufficient focus to service oriented systems thereby lacking the
efficiency to evaluate these systems. Furthermore, Lack of access to source code also frustrates
classical mutation-testing approaches, which require seeding the code with errors.

ISSN: 2597-8993 International Journal of Applied Business and Information Systems 3
 Vol 2, No. 2 pp. 1-13

 Salisu Garba et.al (Metric based framework for Testing….)

II. Literature Review

A. SOA Rationale and SOS Design Principles

A considerable amount of literature has been published on the SOA rationales and design

principles. Enterprise architects regard SOA as an architectural evolution rather than revolution as it

captures many of the excellent features of previous software architectures. Services are the building

blocks of any software architecture, which is the implementation of well-defined business

functionality, consumed by clients in different applications or business processes.

[4] states that the intrinsic property of many modern computing paradigms (e.g. peer-to-peer

systems, distributed systems, and smart environments) is the distribution of services and control

among multiple entities (or agents), be it software, human or a mix of both. Service Oriented

Architecture enable flexibility, adoptability, integratability, business adaptability and the ability to

switch service providers, extend services; modify service due to loosely coupling.

Previous integration models such as point to point and spoke and wheel had certain limitations.
The complexity of application integration for a point to point model rises substantially with every new
application that needs to communicate and share data with it. The Enterprise Service Bus is an
improvement over these two architectures and plays a critical role in connecting heterogeneous
applications and services in a Service-Oriented Architecture

Fig 2: Comparison between ESB & Point-to-Point Integration [18]

The principle of service orientation includes loose coupling, reusability, statelessness, abstraction,

autonomy, composability, discoverability. Therefore, the fundamental aim of SOA is to align

enterprise IT competence with company goals, and to facilitate enterprise IT to respond with better

agility toward business requirements, allowing employees, trading partners and customers to respond

extra quickly and become accustomed to shifting business demands.

A considerable amount of literature has been published on SOS design principles. While other

authors such as [1], [17], [4] take account of Service normalization, Service optimization, Service

relevance, Service encapsulation, Service location transparency as principles of designing SOS. The

table below shows the ground rules that must be followed in designing SOS.

SOA principles that promote loose coupling, standards-based technologies, and coarse-grain
service design enables the creation of reusable services repository that can be pooled into higher-level
services and composite system as new business needs arise. These lower the cost development, testing
and maintenance

4 International Journal of Applied Business and Information Systems ISSN: 2597-8993
 Vol 2, No. 2 pp. 1-12

 Salisu Garba et.al (Metric based framework for Testing….)

Fig. 3: Expected Benefits of SOA (Adopted from: [7])

B. Metrics for Testing SOS

According to [8], it’s next to impossible to control what cannot be measure. By his saying,

it is very clear how important software measures are. The metrics we are about to discuss aim at

getting empirical laws that relate SO program size to expected number of bugs, expected number of

tests required to find bugs, testing technique effectiveness.

Linguistic Metrics that are based on measuring properties of SO program text without

interpreting what the text means such as line of codes (LOC) are highly inaccurate when used to

predict costs, resources and schedules. However, Structural Metrics that are based on structural

relations between the objects in a SO program such as the number of nodes and links in a control

flow-graph should only be used as a rule of thumb at best.

Cyclomatic Complexity is a software metric (measurement), used to indicate the complexity

of a program. [13], states that if G is the control flowgraph of program (P) and G has edges (E) and

nodes (N), then the cyclomatic complexity of program (P) can be established using the following

metrics.

𝑉(𝐺) = 𝐸 − 𝑁 + 2

𝑉(𝐺) = 16 − 13 + 2, 𝑉(𝐺) = 5

Alternatively, the cyclomatic complexity can also be determined by identifying the number of

linearly independent path in the control flowgraph of program (P) or simply by determining the

number of decision nodes in G. The metrics below shows how the cyclomatic complexity of program

(P) can be established using the decision nodes (D) in G.

𝑉(𝐺) = 𝐷 + 1

𝑉(𝐺) = 4 + 1, 𝑉(𝐺) = 5

Table 1: Cyclomatic complexity interpretation

ISSN: 2597-8993 International Journal of Applied Business and Information Systems 5
 Vol 2, No. 2 pp. 1-13

 Salisu Garba et.al (Metric based framework for Testing….)

According to [6], establishing an empirical science of software development is very essential for the

maturity of the discipline. The objective was to identify quantifiable attributes of software, and the

relations between them, thereby evolving philosophical discussions to quantification. This is

comparable to the discovery of quantifiable attributes of matter (such as volume and mass) and the

relationships between them (corresponding to the gas equation). Therefore, Halstead's metrics are

really more than just complexity metrics.

Halstead's metrics states that the vocabulary of a program (𝜂) can be determine by summing the

number of distinct operators (keywords) and the number of distinct operands (data objects) as shown

in the equation below;

Metric 1: Halstead's program vocabulary

Vocabulary of the Program: 𝜂 = 𝜂1 + 𝜂2

While the length of the program (𝑁) can be determined by summing the total number of operators

(keywords) and the total number of operands (data objects) as shown in the equation below.

However, the length of the program (𝑁) should not be confused with line of codes, thereforeN ≠

LOC

Metric 2: Halstead's program length

Length of the Program: 𝑁 = 𝑁1 + 𝑁2 𝑜𝑟

Length of the Program: 𝑁 = 𝜂1 𝑙𝑜𝑔2 𝜂1 + 𝜂2 𝑙𝑜𝑔2 𝜂2

The Volume of the program (V), the difficulty or complexity of the program (D), the amount of effort

required (E) and the time needed to program the service-oriented system to can be determine using

the metrics below;

Metric 3: Halstead's program metrics

Volume of the Program: 𝑉 = 𝑁* 𝑙𝑜𝑔2 𝜂

Difficulty of the Program: 𝐷 =
𝜂1

2
*

𝑁2

𝜂2

The Effort Required: 𝐸 = 𝐷*𝑉

The Required to program: 𝑇 =
𝐸

18

Software Engineers are still counting lines of code due to its popularity. However, the number of

delivered bugs (estimated number of errors in the implementation of SOS) can be determined by

dividing the volume of the program by a Halstead's constant of 3000.

Metric 4: Halstead's bugs estimation metrics

The number of delivered bugs: 𝐵 =
𝑉

3000

Authors in [3] compared actual to predicted bug counts to within 8% over a range of program

sizes from 300 to 12,000 volume of statements. The validity of the metric has been confirmed

experimentally many times, independently, over a wide range of programs and languages

III. Cost Evaluation

For the majority of organizations, the initial stride of SOS project is to outline the cost. So that budget

can be estimated to get the funding. The predicament is that cost estimation of entire SOS

components is so complex and necessitate a clear understanding of the work that has to be done.

Authors in [2] introduced an empirical effort estimation model that is still referenced by the software

engineering community. The constructive cost Model (COCOMO II) is the most widely used

6 International Journal of Applied Business and Information Systems ISSN: 2597-8993
 Vol 2, No. 2 pp. 1-12

 Salisu Garba et.al (Metric based framework for Testing….)

software estimation model in the world which predicts the effort and duration of a project based on

inputs relating to the size of the resulting systems and a number of factors (cost drives) that influence

software projects.

The complexity of the model can be determined by the number of factors (cost drives) that are taken

into account to influence software projects thereby given a more accurate estimate. The development

mode is the most important factor that contributes to the cost and duration of the software project.

This can be organic, semidetached or embedded based on the complexity of the project.

The intermediate and advanced COCOMO models incorporate 15 'cost drivers'. These 'drivers'

multiply the effort derived for the basic COCOMO model. The importance of each driver is assessed

and the corresponding value multiplied into the COCOMO equation, which becomes:

Metric 5: Effort in constructive cost model

𝐸𝑓𝑓𝑜𝑟𝑡: 𝐸 = 𝑎(𝑆)𝑏*𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑐𝑜𝑠 𝑡 𝑑𝑟𝑖𝑣𝑒𝑟𝑠)
Where: E represents effort in person-months, S is the size of the software development in KLOC

(1000LOC), while a and b are constant values dependent on the development mode, this is multiplied

by the product of cost drivers of the project which varies from very to extra high based on the

importance of a particular cost driver to the project.

Table 2: Different modes of COCOMO II

𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡𝑇𝑖𝑚𝑒: 𝐷𝑇 = 𝑐(𝐸)𝑑

SOS Development Time can be computed using the above metrics; Where: DT represents

development time in months, E represents effort in person-months, while c and d are constant values

dependent on the development mode.

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑃𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙: 𝑁𝑃 =
𝐸

𝐷𝑇

The number of personnel for SOS Development can be computed using the above metrics; where:

NP represents the number of personnel (people), E represents effort in person-months, while DT

represents development time in months.

The author in [11] proposed a formula to figure out how much an SOA project will cost as shown in

metric 7 below. Where: C (SOS) is the Cost of SOS, CDC is the Cost of Data Complexity, CSC is

the Cost of Service Complexity, CPC is the Cost of Process Complexity and ETS is the Enabling

Technology Solution.

Metric 6: Formula for cost of service oriented system [11]

𝐶(𝑆𝑂𝑆) = 𝐶𝐷𝐶 + 𝐶𝑆𝐶 + 𝐶𝑃𝐶 + 𝐸𝑇𝑆

Upon arrival at the Cost of SOS, [11] advises figuring in "10 to 20 percent variations in cost for the

simple reason that this is new approach to calculating the cost of service oriented system. However,

Complexity measures the difficulty of understanding the interaction and relationships between the

services and services operations, therefore, the total complexity of service oriented system can only

be determine through the following equation.

ISSN: 2597-8993 International Journal of Applied Business and Information Systems 7
 Vol 2, No. 2 pp. 1-13

 Salisu Garba et.al (Metric based framework for Testing….)

Metric 7: Total complexity metric for a service [3]

𝑇𝐶𝑀(𝑠) =
𝐶(𝑠) + 𝑁𝑆(𝑠) + 𝑁𝑂(𝑠)

𝐶𝑀

Where: TCM is the is the total complexity metric for a service, C is the coupling which can either be

direct or indirect, NS is the number of services, NO is the number of operations and CM is the

cohesion metrics. This is because coupling and cohesion are used to estimate the degree to which the

components of the service-oriented system belong together and the strength of the relationships

between operations in a service [3].

IV. Quality Evaluation

In order to help us categorize software quality factors, McCall proposes a categorization which

focuses on three important aspects of a software product (product revision, product transition,

product operation). However, the de facto definition of software quality consists of two levels:

intrinsic product quality and customer satisfaction. Intrinsic product quality is usually measured by

the number of "bugs" (functional defects) in the software or by how long the software can run before

encountering a "crash."

Authors in [9] define software reliability as the probability of failure-free operation of a program in

a specified environment for a specified time. Reliability metric is an indicator of how broken a

program is. Metrics are best weighted by the severity of errors. A minor error every hour is better

than a catastrophe every month. Mean Time Between Failure (MTBF) which measures how long a

program is likely to run before it does something bad like crash, where MTTF and MTTR are mean

time to failure and mean time to repair respectively as shown in the metrics below.

Metric 8: SOS Reliability metric

𝑅𝑒 𝑙 𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑜𝑓𝑆𝑂𝑆 =
𝑀𝑇𝑇𝐹

(𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅)
*100%

𝑅𝑒 𝑙 𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑜𝑓𝑆𝑂𝑆 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝐵𝐹
*100%

Good practice in software quality engineering, however, also needs to consider the customer's

perspective. From the customer's point of view, the defect rate is not as relevant as the total number

of defects that might affect their business. Therefore, a good defect rate target should lead to a

release-to-release reduction in the total number of defects, regardless of size.

According to [14], [16], dealing with the problem of runtime adaptation of composite services that

implement mission-critical business processes requires a combination of domain-agnostic and

domain-specific quality of service attributes such as response time, throughput, availability and

accuracy.

Table 3: [14], [16] Quality of service metrics

8 International Journal of Applied Business and Information Systems ISSN: 2597-8993
 Vol 2, No. 2 pp. 1-12

 Salisu Garba et.al (Metric based framework for Testing….)

The author in [8] states that customer satisfaction metric consists of the use of five-point scale survey

to measure the level of customer satisfaction. Different organizations employ different parameter in

determining the satisfaction level of a customer. One of the most widely used parameter of customer

satisfaction in software quality is CUPRIMDSO (capability, functionality, usability, performance,

reliability, installability, maintainability, documentation/information, service, and overall).

However, some organizations prefer FURPS (functionality, usability, reliability, performance, and

service) for simplicity.

Table 4: Five-Point scale customer satisfaction

Completely

satisfied
satisfied neutral dissatisfied

Completely

dissatisfied

5 4 3 2 1

A number of metrics can be created based on the five-point-scale data, so as to analyse the

customer’s satisfaction level of the SOS. For instance:

(1) Percent of completely satisfied customers

(2) Percent of satisfied customers (satisfied and completely satisfied)

(3) Percent of dissatisfied customers (dissatisfied and completely dissatisfied)

(4) Percent of non-satisfied (neutral, dissatisfied, and completely dissatisfied)

Furthermore, the weighted index approach can be used to determine Customer satisfaction level of

the SOS. For example, some organizations use the net satisfaction index (NSI) which has the

following weighting factors:

• Completely satisfied = 100%

• Satisfied = 75%

• Neutral = 50%

• Dissatisfied = 25%

• Completely dissatisfied = 0%

Fig 4: NSI customer satisfaction analysis

The range of the NSI starts from 0% (all customers are completely dissatisfied) to 100% (all

customers are completely satisfied). If all customers are satisfied (but not completely satisfied), NSI

will have a value of 75%. This weighting approach, however, may be camouflaging the satisfaction

ISSN: 2597-8993 International Journal of Applied Business and Information Systems 9
 Vol 2, No. 2 pp. 1-13

 Salisu Garba et.al (Metric based framework for Testing….)

profile of one's customer set. For example, if half of the customers are completely satisfied and half

are neutral, NSI's value is also 75%, which is equivalent to the scenario that all customers are

satisfied.

If satisfaction is a good indicator of product loyalty, then half completely satisfied and half neutral

is certainly less positive than all satisfied. Furthermore, we are not sure of the rationale behind giving

a 25% weight to those who are dissatisfied. Therefore, this example of NSI is not a good metric for

determining the customer’s level of satisfaction with SOS; it is inferior to the simple approach of

calculating percentage of specific categories. If the entire satisfaction profile is desired, one can

simply show the percent distribution of all categories via a histogram. A weighted index is for data

summary when multiple indicators are too cumbersome to be shown. For example, if customers'

purchase decisions can be expressed as a function of their satisfaction with specific dimensions of a

product, then a purchase decision index could be useful. In contrast, if simple indicators can do the

job, then the weighted index approach should be avoided.

Fig 5: Customer Satisfaction indicator

System maintenance is any activity intended to eliminate faults or to keep programs in satisfactory

working conditions. The author in [15] suggests a software maturity index (SMI) that provides an

indication of the stability of a software product (based on changes that occur for each release of the

product).

The software maturity index is then computed in the following manner:

Metric 9: SOS software maturity index

𝑆𝑀𝐼 =
[𝑀𝑇 − (𝐹𝑎 + 𝐹𝑐 + 𝐹𝑑)]

𝑀𝑇

Where: SMI is the software maturity index, MT is the number of modules in the current release, Fa is

the number of modules in the current release that have been added, Fc is the number of modules in

the current release that have been changed, Fd is the number of modules from the preceding release

that were deleted in the current release.

V. The proposed SOS testing and Evaluation Framework

10 International Journal of Applied Business and Information Systems ISSN: 2597-8993
 Vol 2, No. 2 pp. 1-12

 Salisu Garba et.al (Metric based framework for Testing….)

Fig 6: The proposed SOS testing and Evaluation Framework

ISSN: 2597-8993 International Journal of Applied Business and Information Systems 11
 Vol 2, No. 2 pp. 1-13

 Salisu Garba et.al (Metric based framework for Testing….)

Table 6: Summary of testing & evaluation metrics with the assumptions, pros and cons

VI. Conclusion

This paper has argued that testing and evaluation of cost and quality plays a vital role in system

development, particularly service oriented systems. However, the established testing and evaluation

methods don’t work well for systems that are made-up of services (service oriented system) due to

the fact that these metrics were created based on preceding software development approaches that

12 International Journal of Applied Business and Information Systems ISSN: 2597-8993
 Vol 2, No. 2 pp. 1-12

 Salisu Garba et.al (Metric based framework for Testing….)

offer insufficient focus to service oriented systems thereby lacking the efficiency to evaluate these

systems. Furthermore, Lack of access to source code also frustrates classical mutation-testing

approaches, which require seeding the code with errors.

Therefore, many metrics are proposed to test and evaluate the SOS. In this paper a set of basic metrics

is proposed and used for proposing derived metrics to evaluate the complexity, cost, quality,

reliability and maintainability of SOS. Subsequently, the result is used to create a Metric based

framework for Testing & Evaluation of Service Oriented System. The framework adds a new

contribution is assessing the complexity and quality of SOS. The findings of this investigation

complement those of earlier studies.

The generalisability of these results is subject to certain limitations. For instance, the metrics do not

pay too much consideration to the service that is built from other services (composite services) and

only consider the operations as building blocks for service-oriented system. Further investigation and

experimentation in using the proposed framework is strongly recommended.

VII. Reference

[1]. Basu, V., & Lederer, A. L. (2011). Agency theory and consultant management in enterprise resource

planning systems implementation. ACM SIGMIS Database, 42(3), 10-33.

[2]. Boehm, B. W., Madachy, R., & Steece, B. (2000). Software cost estimation with Cocomo II with Cdrom.

Prentice Hall PTR.

[3]. Elhag, A. A. M., & Mohamad, R. (2014, September). Metrics for evaluating the quality of service-oriented

design. In Software Engineering Conference (MySEC), 2014 8th Malaysian (pp. 154-159). IEEE.

[4]. Erl, T., Merson, P., & Stoffers, R. (2017). Service-oriented Architecture: Analysis and Design for Services

and Microservices. Prentice Hall PTR.

[5]. Fuggetta, A., Lavazza, L., Morasca, S., Cinti, S., Oldano, G., & Orazi, E. (1998). Applying GQM in an

industrial software factory. ACM Transactions on Software Engineering and Methodology

(TOSEM), 7(4), 411-448.

[6]. Halstead, M. H. (1977). Elements of software science (Vol. 7, p. 127). New York: Elsevier.

[7]. Kai, J., Miao, H., & Gao, H. (2016). A Survey of Quality Prediction Methods of Service-oriented

Systems. International Journal of Hybrid Information Technology, 9(4), 183-198.

[8]. Kan, S. H. (2002). Software quality metrics overview. Metrics and Models in Software Quality

Engineering, 85-120.

[9]. Kapur, K. C., & Pecht, M. (2014). Reliability engineering. John Wiley & Sons.

[10]. Jensen, H. A., & Vairavan, K. (1985). An experimental study of software metrics for real-time

software. IEEE Transactions on Software Engineering, (2), 231-234.

[11]. Linthicum, D. (2007). How much will your SOA cost?. SOAInstitute. org, Mar.

[12]. Li, H. F., & Cheung, W. K. (1987). An empirical study of software metrics. IEEE Transactions on

Software Engineering, (6), 697-708.

[13]. McCabe, T. J. (1976). A complexity measure. IEEE Transactions on software Engineering, (4), 308-320.

[14]. Moser, O., Rosenberg, F., & Dustdar, S. (2012). Domain-specific service selection for composite

services. IEEE Transactions on Software Engineering, 38(4), 828-843.

[15]. Oman, P., & Hagemeister, J. (1992, November). Metrics for assessing a software system's

maintainability. In Software Maintenance, 1992. Proceerdings., Conference on (pp. 337-344). IEEE.

[16]. Rosenberg, L. H., & Sheppard, S. B. (1994, October). Metrics in software process assessment, quality

assurance and risk assessment. In Software Metrics Symposium, 1994., Proceedings of the Second

International (pp. 10-16). IEEE.

[17]. Seth, A., Agarwal, H., & Singla, A. R. (2011). Designing a SOA based model. ACM SIGSOFT Software

Engineering Notes, 36(5), 1-7.

[18]. Seth, A., Agrawal, H., & Singla, A. R. (2014). Techniques for evaluating service oriented systems: A

Comparative Study.

