Methane reduction from ruminant microbiota of sheep using polyphenols extract of different olive mill wastewater

Authors

DOI:

https://doi.org/10.31763/bioenvipo.v1i2.389

Keywords:

Methane, Olive millwastewater, Protozoa, Ammonia, polyphenols

Abstract

Olive oil production generates considerable quantities of olive mill wastewater, a powerful pollutant dumped in nature without any prior treatment. Olive mill wastewater is considered as a potential source of natural products of high additive value, due to their content of phenolic compounds and other natural antioxidants. This study aims to investigate the impact of phenolic substances, extracted from different olive mill wastewater of different olive varieties, on the composition of the ruminal microbiota of sheep. The results of the quantification of phenolic compounds show the richness of the three varieties (Sigoise, Azzeradj and Chemlal) in polyphenols with respective values of 26.3, 23.97 and 20.09 g/L. Moreover, a stimulation in the fermentative activity was reported, which caused a significant reduction in methane production (24 hours of incubation) of 7.31, 39.36 and 30.06% for Sigoise, Azzeradj and Chemlal, respectively. In addition, this decrease creates a reduction in the production of ammonia and the number of protozoa.

Author Biography

Selma Hamimed, Carthage University

Faculty of Sciences of Bizerte

References

Hamimed, S., Landoulsi, A. & Chatti, A. The bright side of olive mill wastewater: valuables bioproducts after bioremediation. International Journal of Environmental Science and Technology 18, 4053-4074 (2021). https://doi.org:10.1007/s13762-021-03145-0

Nikolaou, A. & Kourkoutas, Y. Exploitation of olive oil mill wastewaters and molasses for ethanol production using immobilized cells of Saccharomyces cerevisiae. Environ Sci Pollut Res Int 25, 7401-7408 (2018). https://doi.org:10.1007/s11356-017-1051-6

Cardinali, A. et al. Biological activity of high molecular weight phenolics from olive mill wastewater. J Agric Food Chem 58, 8585-8590 (2010). https://doi.org:10.1021/jf101437c

Dermeche, S., Nadour, M., Larroche, C., Moulti-Mati, F. & Michaud, P. Olive mill wastes: Biochemical characterizations and valorization strategies. Process Biochemistry 48, 1532-1552 (2013). https://doi.org:10.1016/j.procbio.2013.07.010

Rahmanian, N., Jafari, S. M. & Galanakis, C. M. Recovery and Removal of Phenolic Compounds from Olive Mill Wastewater. Journal of the American Oil Chemists' Society 91, 1-18 (2013). https://doi.org:10.1007/s11746-013-2350-9

Kiril Mert, B., Yonar, T., Yalili Kilic, M. & Kestioglu, K. Pre-treatment studies on olive oil mill effluent using physicochemical, Fenton and Fenton-like oxidations processes. J Hazard Mater 174, 122-128 (2010). https://doi.org:10.1016/j.jhazmat.2009.09.025

Sanches, S. et al. Pilot scale nanofiltration treatment of olive mill wastewater: a technical and economical evaluation. Environ Sci Pollut Res Int 24, 3506-3518 (2017). https://doi.org:10.1007/s11356-016-8083-1

Mostafa, H. et al. Treatment of olive mill wastewater using High Power Ultrasound (HPU) and Electro-Fenton (EF) method. Chemical Engineering and Processing - Process Intensification 131, 131-136 (2018). https://doi.org:10.1016/j.cep.2018.07.015

Bouaouine, O., Bourven, I., Khalil, F. & Baudu, M. Reuse of olive mill wastewater as a bioflocculant for water treatment processes. Journal of Cleaner Production 246 (2020). https://doi.org:10.1016/j.jclepro.2019.119031

Nassar, N. N. et al. Treatment of olive mill based wastewater by means of magnetic nanoparticles: Decolourization, dephenolization and COD removal. Environmental Nanotechnology, Monitoring & Management 1-2, 14-23 (2014). https://doi.org:10.1016/j.enmm.2014.09.001

Hamimed, S., Jebli, N., Sellami, H., Landoulsi, A. & Chatti, A. Dual Valorization of Olive Mill Wastewater by Bio-Nanosynthesis of Magnesium Oxide and Yarrowia lipolytica Biomass Production. Chem Biodivers 17, e1900608 (2020). https://doi.org:10.1002/cbdv.201900608

Molina-Alcaide, E. & Yáñez-Ruiz, D. R. Potential use of olive by-products in ruminant feeding: A review. Animal Feed Science and Technology 147, 247-264 (2008). https://doi.org:10.1016/j.anifeedsci.2007.09.021

Makkar, H. P. S. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Ruminant Research 49, 241-256 (2003). https://doi.org:10.1016/s0921-4488(03)00142-1

Porter, L. J., Hrstich, L. N. & Chan, B. G. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25, 223-230 (1985). https://doi.org:10.1016/s0031-9422(00)94533-3

Ayoola, G. A. et al. Phytochemical Screening and Free Radical Scavenging Activities of the Fruits and Leaves of Allanblackia floribunda Oliv (Guttiferae). International Journal of Health Research 1 (2009). https://doi.org:10.4314/ijhr.v1i2.47920

Menke, K. H. et al. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science 93, 217-222 (2009). https://doi.org:10.1017/s0021859600086305

Ørskov, E. R. & McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science 92, 499-503 (2009). https://doi.org:10.1017/s0021859600063048

Jouany, J. P. Les fermentations dans le rumen et leur optimisation. INRAE Productions Animales 7, 207-225 (1994). https://doi.org:10.20870/productions-animales.1994.7.3.4170

Marbach, E. P. & Chaney, A. L. Modified Reagents for Determination of Urea and Ammonia. Clinical Chemistry 8, 130-132 (1962). https://doi.org:10.1093/clinchem/8.2.130

Ogimoto, K. & Imai, S. Atlas of rumen microbiology. (Japan Scientific Societies Press, 1981).

Hamdi, M. & Ellouz, R. Treatment of detoxified olive mill wastewaters by anaerobic filter and aerobic fluidized bed processes. Environmental Technology 14, 183-188 (1993). https://doi.org:10.1080/09593339309385278

Khoufi, S., Aloui, F. & Sayadi, S. Treatment of olive oil mill wastewater by combined process electro-Fenton reaction and anaerobic digestion. Water Res 40, 2007-2016 (2006). https://doi.org:10.1016/j.watres.2006.03.023

Hamimed, S., Nejib, J., Rayene, H., Ahmed, L. & Abdelwaheb, C. Phytochemicals candidates as promising preventives and/or curatives for COVID-19 Infection: A brief review. Insights in Biology and Medicine 5, 001-006 (2021). https://doi.org:10.29328/journal.ibm.1001019

Bazoti, F. N., Gikas, E., Skaltsounis, A. L. & Tsarbopoulos, A. Development of a liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI MS/MS) method for the quantification of bioactive substances present in olive oil mill wastewaters. Anal Chim Acta 573-574, 258-266 (2006). https://doi.org:10.1016/j.aca.2006.03.075

McSweeney, C. S., Palmer, B., McNeill, D. M. & Krause, D. O. Microbial interactions with tannins: nutritional consequences for ruminants. Animal Feed Science and Technology 91, 83-93 (2001). https://doi.org:10.1016/s0377-8401(01)00232-2

Min, B. R., Barry, T. N., Attwood, G. T. & McNabb, W. C. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Animal Feed Science and Technology 106, 3-19 (2003). https://doi.org:10.1016/s0377-8401(03)00041-5

Barry, T. N. & McNabb, W. C. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. British Journal of Nutrition 81, 263-272 (2007). https://doi.org:10.1017/s0007114599000501

Ammar, H., López, S. & González, J. S. Assessment of the digestibility of some Mediterranean shrubs by in vitro techniques. Animal Feed Science and Technology 119, 323-331 (2005). https://doi.org:10.1016/j.anifeedsci.2004.12.013

Heider, J. & Fuchs, G. Microbial anaerobic aromatic metabolism. Anaerobe 3, 1-22 (1997). https://doi.org:10.1006/anae.1997.0073

McAllister, T. A., Cheng, K. J., Okine, E. K. & Mathison, G. W. Dietary, environmental and microbiological aspects of methane production in ruminants. Canadian Journal of Animal Science 76, 231-243 (1996). https://doi.org:10.4141/cjas96-035

Hamimed, S., Barkaoui, T., Trabelsi, I., Landoulsi, A. & Chatti, A. High-performance biological treatment of tuna wash processing wastewater using Yarrowia lipolytica. Environ Sci Pollut Res Int 28, 1545-1554 (2021). https://doi.org:10.1007/s11356-020-10586-6

Johnson, K. A. & Johnson, D. E. Methane emissions from cattle. J Anim Sci 73, 2483-2492 (1995). https://doi.org:10.2527/1995.7382483x

Getachew, G., Makkar, H. P. & Becker, K. Tannins in tropical browses: effects on in vitro microbial fermentation and microbial protein synthesis in media containing different amounts of nitrogen. J Agric Food Chem 48, 3581-3588 (2000). https://doi.org:10.1021/jf990740v

Kamra, D. N., Agarwal, N. & Chaudhary, L. C. Inhibition of ruminal methanogenesis by tropical plants containing secondary compounds. International Congress Series 1293, 156-163 (2006). https://doi.org:10.1016/j.ics.2006.02.002

Tiemann, T. T., Lascano, C. E., Kreuzer, M. & Hess, H. D. The ruminal degradability of fibre explains part of the low nutritional value and reduced methanogenesis in highly tanniniferous tropical legumes. Journal of the Science of Food and Agriculture 88, 1794-1803 (2008). https://doi.org:10.1002/jsfa.3282

Downloads

Published

2021-12-28

How to Cite

1.
Hamimed S, Kthiri A. Methane reduction from ruminant microbiota of sheep using polyphenols extract of different olive mill wastewater. Biological. environ. pollut. [Internet]. 2021Dec.28 [cited 2024Apr.26];1(2):67-75. Available from: https://pubs.ascee.org/index.php/bioenvipo/article/view/389

Issue

Section

Articles