Identification of microalgae in peat swamp waters

Authors

  • Faridah Tsuraya Universitas Palangka Raya
  • M Sadam Rahmansyah Universitas Palangka Raya
  • Fauzan Fikri Universitas Palangka Raya
  • Rizka Hasanah Universitas Palangka Raya

DOI:

https://doi.org/10.31763/bioenvipo.v3i2.654

Keywords:

Abiotic, Microalgae, Peat swamp

Abstract

Microalgae are a group of autotrophic microorganisms that can live in freshwater and marine ecosystems. Microalgae in peat swamp waters are important to investigate and identify because they are used as aquatic bioindicators and have various potency and applications. This study aims to identify microalgae in peat swamp water in the Universitas Palangka Raya area, Central Kalimantan. This research used a purposive sampling method with two stations. The abiotic factors observed were temperature, dissolved oxygen, water transparency, and pH. Microalgae found were 12 genera (Behind the FMIPA UPR Building) and 6 genera (Jalan B Koetin). Some of the microalgae included Closterium, Micrasterias, Chlorella, Botryococcus, Cosmarium, Euastrum, Pleurotaenium, Chroococcus, Chlorogonium, Euglena, Selenastrum, Zygnema, Anabaena, Thalassionema, Pinnularia, Staunrastrum, and Gonatozygon. Some of them have morphological characteristics and potential in various fields. The abiotic factors in this research showed the normal temperature (29.5 0C and 27 0C), quite low for DO (2.9 mg/L and 4.7 mg/L), low brightness (23.25 and 25 cm), and acidic pH (4). Abiotic factors indicate that the condition of peat swamp water is a reasonably extreme ecosystem but is still suitable for the life of several species of microalgae.

Author Biographies

Faridah Tsuraya, Universitas Palangka Raya

Department of Biology

M Sadam Rahmansyah, Universitas Palangka Raya

Department of Biology

Fauzan Fikri, Universitas Palangka Raya

Department of Biology

Rizka Hasanah, Universitas Palangka Raya

Department of Biology

References

Finlayson, C. M. & Davidson, N. C. Global wetland outlook: Technical note on status and trends. (2018).

Nainggolan, A., Eddiwan, & Windarti. Identifikasi dan isolasi mikroalga dari perairan rawa gambut di Kelurahan Air Hitam Kota Pekanbaru Provinsi Riau. Jurnal Sumberdaya dan Lingkungan Akuatik 3, (2022).

Page, S., Rieley, J., & Banks, C. Global and regional importance of the tropical peatland carbon pool. Global Change Biology 17, 798-818 (2011). https://doi.org/10.1111/j.1365-2486.2010.02279.x

Harenda, K. M., Lamentowicz, M., Samson, M. & Chojnicki, B. H. The role of peatlands and their carbon storage function in the context of climate change. GeoPlanet: Earth and Planetary Sciences, 169–187 (2018). https://doi.org/10.1007/978-3-319-71788-3_12

Kazi, T. G. et al. Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotoxicol Environ Saf 72, 301–309 (2009). https://doi.org/10.1016/j.ecoenv.2008.02.024

Dolganyuk, V. et al. Microalgae: A promising source of valuable bioproducts. Biomolecules 10, 1–24 (2020). https://doi.org/10.3390/biom10081153

Nontji, A. Laut Nusantara. (2005).

Nugroho, A. Bioindikator Kualitas Air. (2008).

Bhattacharjee, M. Pharmaceutically valuable bioactive compounds of algae. Asian Journal of Pharmaceutical and Clinical Research 9, 43–47 (2016). https://doi.org/10.22159/ajpcr.2016.v9i6.14507

Gürlek, C. et al. Evaluation of several microalgal extracts as bioactive metabolites as potential pharmaceutical compounds. IFMBE Proc 73, 267–272 (2020). https://doi.org/10.1007/978-3-030-17971-7_41

Balasubramaniam, V., Gunasegavan, R., Mustar, S., Muhammad, H., & Noh, M. Isolation of industrial important bioactive compounds from microalgae. Molecules 26, 943 (2021). https://doi.org/10.3390/molecules26040943

Olasehinde, T. A., Olaniran, A. O., Okoh, A. I. & Koulen, P. Therapeutic potentials of microalgae in the treatment of Alzheimer’s disease. Molecules 22, 1–18 (2017). https://doi.org/10.3390/molecules22030480

Bellinger, E. G. & Sigee, D. C. Freshwater Algae: Identification, Enumeration and use as Bioindicators. (2015). https://doi.org/10.1002/9781118917152

Evans, R. I. & Prescott, G. W. How to know the fresh-water algae. Bulletin of the Torrey Botanical Club 83, 311 (1956). https://doi.org/10.2307/2482600

Şahin, B., Akar, B. & Barinova, S. Cohabitant charophyte algal flora and its ecology in high-mountain lakes of the Artabel Lakes Nature Park (Gumushane, Turkey). Bot Serb 44, 11–25 (2020). https://doi.org/10.2298/BOTSERB2001011S

Levanets, A. & van Vuuren, S. J. Morphology, taxonomy, biogeography and ecology of Micrasterias foliacea Bailey ex Ralfs (Desmidiales, Zygnematophyceae). PhytoKeys 226, 33–51 (2023). https://doi.org/10.3897/phytokeys.226.103500

Lütz-Meindl, U. Micrasterias as a model system in plant cell biology. Front Plant Sci 7, 1–21 (2016). https://doi.org/10.3389/fpls.2016.00999

Andrade, L. M. Chlorella and spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements: An overview. MOJ Food Processing & Technology 6, 45–58 (2018). https://doi.org/10.15406/mojfpt.2018.06.00144

Rai, U. N. et al. Morphology and cultural behavior of Botryococcus protuberans with notes on the genus. J Environ Biol 28, 181–184 (2007).

Agustini, N. W. S., Hidhayati, N. & Oktora, B. S. Antioxidant Activity of Microalgae Extract Cosmarium sp. Using 2.2-Azinobis-(3-Ethylbenzothiazoline)-6-Sulfonic Acid (ABTS) Radical Cation Assay. Biosaintifika 14, 321–331 (2022). https://doi.org/10.15294/biosaintifika.v14i3.37735

Evans, J., Brazenor, A. & Hennecke, B. Exotic Invasive Species Identification of Species with Environmental Impacts. (2017).

Shakhmatov, A. S. Genera euastrum and micrasterias (Charophyta, Desmidiales) from fens in the southern part of middle Urals, Russia. Botanica 26, 15–27 (2020). https://doi.org/10.2478/botlit-2020-0002

Lomakool, S. et al. Biological activities and phytochemicals profiling of different cyanobacterial and microalgal biomass. Biomass Convers Biorefin 13, 4195–4211 (2023). https://doi.org/10.1007/s13399-021-01974-0

Hirose, H. et al. Illustration of the Japanese freshwater algae. (1977).

Kim, Y. J. & Daejin, H. S. K. Algal flora of Korea marine red Algae flora and fauna of Korea. (2012).

Komárková, J., Jezberová, J., Komárek, O. & Zapomělová, E. Variability of Chroococcus (cyanobacteria) morphospecies with regard to phylogenetic relationships. Hydrobiologia 639, 69–83 (2010). https://doi.org/10.1007/s10750-009-0015-3

Hidhayati, N., Agustini, N. W. S., Apriastini, M. & Margaretha, C. Potensi pigmen fikobiliprotein sebagai agen antioksidan dan toksisitas hayati dari sianobakteria Chroococcus turgidus (Potency of phycobiliprotein pigment as antioxidant and biological toxicity agents from cyanobacteria Chroococcus turgidus). Biopropal Industri 11, 41 (2020). https://doi.org/10.36974/jbi.v11i1.5540

Nakada, T., Nozaki, H. & Pröschold, T. Molecular phylogeny, ultrastructure, and taxonomic revision of chlorogonium (Chlorophyta): Emendation of chlorogonium and description of Gungnir Gen. Nov. and Rusalka Gen. Nov. J Phycol 44, 751–760 (2008). https://doi.org/10.1111/j.1529-8817.2008.00525.x

Ivan, K. & Katya, V. A new species chlorogonium ehrenberg (Haematococcaceae, Chlorophyta) from Bulgaria. Journal of Biological & Scientific Opinion 2, 298–299 (2014). https://doi.org/10.7897/2321-6328.02567

Kreuzberg, K. Starch fermentation via a formate producing pathway in Chlamydomonas reinhardii, Chlorogonium elongatum and Chlorella fusca. Physiol Plant 61, 87–94 (1984). https://doi.org/10.1111/j.1399-3054.1984.tb06105.x

Maghfiroh, K. Q., Erfianti, T., Nurafifah, I. & Amelia, R. The effect of photoperiodism on nutritional potency of Euglena sp. Indonesian strains. Mal J Nutr 29, 453–466 (2023).

Mahapatra, D. M., Chanakya, H. N. & Ramachandra, T. V. Euglena sp. as a suitable source of lipids for potential use as biofuel and sustainable wastewater treatment. J Appl Phycol 25, 855–865 (2013). https://doi.org/10.1007/s10811-013-9979-5

Pugliese, A., Biondi, L., Bartocci, P. & Fantozzi, F. Selenastrum capricornutum a new strain of algae for biodiesel production. Fermentation 6, (2020). https://doi.org/10.3390/fermentation6020046

Kudahettige, N. P., Pickova, J. & Gentili, F. G. Stressing algae for biofuel production: Biomass and biochemical composition of Scenedesmus dimorphus and Selenastrum minutum grown in municipal untreated wastewater. Front Energy Res 6, 1–10 (2018). https://doi.org/10.3389/fenrg.2018.00132

Saleh, B. Algae efficacy as a potent tool for heavy metals removal: An overview. Journal of Stress Physiology & Biochemistry 15, 53–67 (2019).

Lalrinkimi & Kant Mehta, S. Assessing the prospects of Zygnema heydrichii, a filamentous Chlorophyte, as a biodiesel feedstock. Bioresour Technol 345, 126487 (2022). https://doi.org/10.1016/j.biortech.2021.126487

Kim, S. Handbook of Marine Microalgae Biotechnology Advances. Elsevier (2015). https://doi.org/10.1007/978-3-642-53971-8

Dewi, R., Zainuri, M., Anggoro, S., Winanto, T. & Endrawati, H. Potential harmful algal blooms (HABs) in segara anakan lagoon, Central Java, Indonesia. E3S Web of Conferences 47, 1–12 (2018). https://doi.org/10.1051/e3sconf/20184704010

Samudra, S. H. et al. The phenomenon of Harmful Algae Blooms (HABs) based on literature study in Indonesia Sea Waters from 2005-2021. IOP Conf Ser Earth Environ Sci 1251, 12044 (2023). https://doi.org/10.1088/1755-1315/1251/1/012044

Świderska-Kołacz, G. et al. Influence of algae supplementation on the concentration of glutathione and the activity of glutathione enzymes in the mice liver and kidney. Nutrients 13, (2021). https://doi.org/10.3390/nu13061996

González Garraza, G., Burdman, L. & Mataloni, G. Desmids (Zygnematophyceae, Streptophyta) community drivers and potential as a monitoring tool in South American peat bogs. Hydrobiologia 833, 125–141 (2019). https://doi.org/10.1007/s10750-019-3895-x

Brehm, J. M. P. D. & Meijering. Field and Laboratory Methods for General Ecology. (1990).

Nirmala, K., Ratnasari, A. & Budiman, S. Penentuan kesesuaian lokasi budidaya rumput laut di Teluk Gerupuk - Nusa Tenggara Barat menggunakan inderaja dan SIG. Jurnal Akuakultur Indonesia 13, 73–82 (2014). https://doi.org/10.19027/jai.13.73-82

Boyd, C. E. Water Quality Management for Pond Fish Culture. (1979).

Harmoko, H., Lokaria, E. & Misra, S. Eksplorasi mikroalga di air terjun Watervang Kota Lubuklinggau. BIOEDUKASI (Jurnal Pendidikan Biologi) 8, 75 (2017). https://doi.org/10.24127/bioedukasi.v8i1.840

Murulidhar, V. N. & Murthy, V. N. Y. Ecology, distribution and diversity of phytoplankton in teetha wetland, Tumakuru District, Karnataka, India. Int J Environ Pollut Res 3, 1–12 (2015).

Mawarni, A. et al. Short communication: Community of phytoplankton in peatland canal, riau, and wet dune slacks of parangtritis, yogyakarta, indonesia. Biodiversitas 21, 1874–1879 (2020). https://doi.org/10.13057/biodiv/d210513

Leidonald, R., Yusni, E., Febriansyah S. R., Rangkuti, A. M. & Zulkifli, A. Keanekaragaman fitoplankton dan hubungannya dengan kualitas air di sungai Aek Pohon, Kabupaten Mandailing Natal Provinsi Sumatera Utara. J.Aquat.Fish.Sci 1, 85–96 (2022).

Muhtadi, A. Produktivitas primer perairan. (2017).

Hamuna, B., Tanjung, R. H. R., Suwito, S., Maury, H. K. & Alianto, A. Study of seawater quality and pollution index based on physical-chemical parameters in the waters of the Depapre District, Jayapura. Jurnal Ilmu Lingkungan 16, 35–43 (2018). https://doi.org/10.14710/jil.16.1.35-43

Syafalni, S. et al. Treatment of Dye Wastewater Using Granular Activated Carbon and Zeolite Filter. Mod Appl Sci 6, (2012). https://doi.org/10.5539/mas.v6n2p37

Murulidhar, V. N. & Yogananda Murthy, V. N. Ecology, distribution and diversity of phytoplankton in teetha wetland, Tumakuru District, Karnataka, India. Int J Environ Pollut Res 3, 1–12 (2015).

Downloads

Published

2023-12-30

How to Cite

1.
Tsuraya F, Rahmansyah MS, Fikri F, Hasanah R. Identification of microalgae in peat swamp waters. Biological. environ. pollut. [Internet]. 2023Dec.30 [cited 2024May1];3(2):43-5. Available from: https://pubs.ascee.org/index.php/bioenvipo/article/view/654

Issue

Section

Articles