Chemical analysis of Cyanobacterial fatty acids from Cagar Alam Pulau Dua, Banten: Insights from gas chromatography

Authors

  • Lucia Dwi Savitri Universitas Sultan Ageng Tirtayasa
  • Siti Gia Syauqiyah Fitri Universitas Sultan Ageng Tirtayasa
  • Rida Oktorida Khastini Universitas Sultan Ageng Tirtayasa

DOI:

https://doi.org/10.31763/bioenvipo.v4i1.746

Keywords:

Cyanobacteria, Fatty acid, Gas Chromatography

Abstract

Cyanobacteria exhibit a wide range of fatty acid profiles, which vary significantly among different species and strains. This study aimed to characterize the fatty acid profile of cyanobacteria isolated from Cagar Alam Pulau Dua (CPAD) Sanctuary in Serang, Banten. The isolates, previously identified as Lyngbya sp. and Aphanothece sp., were grown on ASN-III medium and harvested at the beginning of the stationary phase. Cyanobacterial lipids were extracted using two methods, i.e., the Bligh and Dyer method and the Soxhlet method. The composition of cyanobacterial fatty acid was analyzed using gas-liquid chromatography (GLC). The result showed that Lyngbya and Aphanothece have a higher saturated fatty acid composition than unsaturated fatty acid. Lyngbya contains 33.154% SFAs and 7.304% UFAs, while Aphanothece contains 55.172% SFAs and 44.783% UFAs. The saturated fatty acids in Lyngbya and Aphanothece are lauric acid, myristic acid, palmitic acid, and stearic acid, while the unsaturated fatty acids found are oleic acid and linoleic acid. The study paves the way for further research into the industrial applications of cyanobacterial fatty acids, particularly in biofuel production, nutraceuticals, and other biotechnological fields.

Author Biographies

Lucia Dwi Savitri, Universitas Sultan Ageng Tirtayasa

Department of Biology Education

Siti Gia Syauqiyah Fitri, Universitas Sultan Ageng Tirtayasa

Department of Biology Education,

Rida Oktorida Khastini, Universitas Sultan Ageng Tirtayasa

Department of Biology Education

References

Kahn, A., Oliveira, P., Cuau, M. & Leao, P. N. Incorporation, fate, and turnover of free fatty acids in cyanobacteria. FEMS Microbiol Rev 47 (2023). https://doi.org:10.1093/femsre/fuad015

Lieberman, S., Enig, M. G. & Preuss, H. G. A Review of Monolaurin and Lauric Acid: Natural Virucidal and Bactericidal Agents. Alternative and Complementary Therapies 12, 310-314 (2006). https://doi.org:10.1089/act.2006.12.310

Nakatsuji, T. et al. Antimicrobial property of lauric acid against Propionibacterium acnes: its therapeutic potential for inflammatory acne vulgaris. J Invest Dermatol 129, 2480-2488 (2009). https://doi.org:10.1038/jid.2009.93

Almatsier, S. Prinsip dasar ilmu gizi. (Gramedia Pustaka Utama, 2009).

Rustan, A. C. & Drevon, C. A. in Encyclopedia of Life Sciences Ch. Fatty Acids: Structures and Properties, (John Wiley & Sons, 2005).

Lund, J. & Rustan, A. C. in Encyclopedia of Life Sciences Ch. Fatty Acids: Structures and Properties, 283-292 (John Wiley & Sons, 2020).

Mancini, A. et al. Biological and nutritional properties of Palm oil and Palmitic acid: Effects on health. Molecules 20, 17339-17361 (2015). https://doi.org:10.3390/molecules200917339

Selvan, B. K. et al. Biodiesel production from marine cyanobacteria cultured in plate and tubular photobioreactors. Indian journal of experimental biology 51, 262–268 (2013).

de Carvalho, C. & Caramujo, M. J. The various roles of fatty acids. Molecules 23 (2018). https://doi.org:10.3390/molecules23102583

Setta, B. R. S., Barbarino, E., Passos, F. B. & Lourenço, S. O. An assessment of the usefulness of the cyanobacterium Synechococcus subsalsus as a source of biomass for biofuel production. Latin American Journal of Aquatic Research 42, 364-375 (2014). https://doi.org:10.3856/vol42-issue2-fulltext-7

Parmar, A., Singh, N. K., Pandey, A., Gnansounou, E. & Madamwar, D. Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102, 10163-10172 (2011). https://doi.org:10.1016/j.biortech.2011.08.030

Sitther, V. et al. in Advances in Cyanobacterial Biology Ch. Cyanobacteria as a biofuel source: advances and applications, 269-289 (Academic Press, 2020).

Marlen, T., Glennise Faye, C. M., Nuttapong, S. & Padivarada, L. Exploration of fatty acid methyl esters (FAME) in cyanobacteria for a wide range of algae-based biofuels. Maejo International Journal of Energy and Environmental Communication 2, 35-42 (2020). https://doi.org:10.54279/mijeec.v2i3.245039

Hussain, J. et al. Effects of different biomass drying and lipid extraction methods on algal lipid yield, fatty acid profile, and biodiesel quality. Appl Biochem Biotechnol 175, 3048-3057 (2015). https://doi.org:10.1007/s12010-015-1486-5

Li, Y. et al. A comparative study: the impact of different lipid extraction methods on current microalgal lipid research. Microb Cell Fact 13, 14 (2014). https://doi.org:10.1186/1475-2859-13-14

Gorgich, M., Mata, T. M., Martins, A. A., Branco-Vieira, M. & Caetano, N. S. Comparison of different lipid extraction procedures applied to three microalgal species. Energy Reports 6, 477-482 (2020). https://doi.org:10.1016/j.egyr.2019.09.011

Saha, S. K., Uma, L. & Subramanian, G. Nitrogen stress induced changes in the marine cyanobacterium Oscillatoria willei BDU 130511. FEMS Microbiol Ecol 45, 263-272 (2003). https://doi.org:10.1016/S0168-6496(03)00162-4

Sharma, K. K., Schuhmann, H. & Schenk, P. M. High lipid induction in microalgae for biodiesel production. Energies 5, 1532-1553 (2012). https://doi.org:10.3390/en5051532

Juneja, A., Ceballos, R. & Murthy, G. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A Review. Energies 6, 4607-4638 (2013). https://doi.org:10.3390/en6094607

Jeong, G.-T. & Park, D.-H. Optimization of lipid extraction from marine green macro-algae as biofuel resources. Korean Journal of Chemical Engineering 32, 2463-2467 (2015). https://doi.org:10.1007/s11814-015-0083-1

Arabian, D. Optimization of cell wall disruption and lipid extraction methods by combining different solvents from wet Chlorella vulgaris. Journal of the American Oil Chemists' Society 99, 569-583 (2022). https://doi.org:10.1002/aocs.12596

Yang, F. et al. A novel lipid extraction method from wet microalga Picochlorum sp. at room temperature. Mar Drugs 12, 1258-1270 (2014). https://doi.org:10.3390/md12031258

Benfica, J. et al. Enhanced extraction of levodopa from mucuna pruriens seeds using aqueous solutions of eutectic solvents. ACS Sustainable Chemistry & Engineering 8, 6682-6689 (2020). https://doi.org:10.1021/acssuschemeng.0c00196

Hammann, W., Ross, A. & Seames, W. Sequential extraction of carbohydrates and lipids from chlorella vulgaris using combined physical and chemical pre-treatments. ChemEngineering 8 (2024). https://doi.org:10.3390/chemengineering8010011

Hopcroft, P. J. & Fisher, D. I. Development of a medium-throughput targeted LCMS assay to detect endogenous cellular levels of malonyl-CoA to screen fatty acid synthase inhibitors. J Biomol Screen 21, 111-116 (2016). https://doi.org:10.1177/1087057115617894

Korbecki, J., Bosiacki, M., Gutowska, I., Chlubek, D. & Baranowska-Bosiacka, I. Biosynthesis and significance of fatty acids, glycerophospholipids, and triacylglycerol in the processes of glioblastoma tumorigenesis. Cancers (Basel) 15 (2023). https://doi.org:10.3390/cancers15072183

Downloads

Published

2024-06-30

How to Cite

1.
Savitri LD, Fitri SGS, Khastini RO. Chemical analysis of Cyanobacterial fatty acids from Cagar Alam Pulau Dua, Banten: Insights from gas chromatography. Biological. environ. pollut. [Internet]. 2024Jun.30 [cited 2025Jul.17];4(1):1-7. Available from: https://pubs.ascee.org/index.php/bioenvipo/article/view/746

Issue

Section

Articles