Probiotic potential of bacterial isolates from Klawalu Mangrove: Physiological characterization

Authors

  • Sukmawati Sukmawati Universitas Muhammadiyah Sorong
  • Fatimah Hardianti Universitas Muhammadiyah Sorong
  • Mohd Ihwan Bin Zakariah Universiti Malaysia Terengganu
  • Sulfiana Sulfiana Universitas Muhammadiyah Sorong
  • Riskawati Riskawati Universitas Muhammadiyah Sorong

DOI:

https://doi.org/10.31763/bioenvipo.v4i1.779

Keywords:

Bacillus amyloliquefaciens, Mangrove area, Probiotic

Abstract

Probiotic bacteria are a form of biological control because they play a role in suppressing or killing pathogenic microorganisms. Probiotic bacteria are capable of producing antimicrobial compounds such as lactic acid, hydrogen peroxide, and bacteriocins. The aim of this research is to determine the physiology of candidate probiotic bacteria, including their antimicrobial activity, resistance to acidic conditions, and resistance to bile salts. The research method is descriptive. The results of this study indicate that Bacillus safensis strain C251 SA3, Bacillus amyloliquefaciens strain NO10 SA8, and Bacillus australimaris strain IIHR GAPB01 SL1 are each capable of inhibiting the growth of pathogenic bacteria and surviving in acidic conditions (pH 2). However, only Bacillus amyloliquefaciens strain NO10 SA8 is resistant to bile salt pressure. Thus, the potential candidate for probiotic bacteria is Bacillus amyloliquefaciens strain NO10 SA8.

Author Biographies

Sukmawati Sukmawati, Universitas Muhammadiyah Sorong

Department of Fishery Product Processing

Fatimah Hardianti, Universitas Muhammadiyah Sorong

Department of Fishery Product Processing

Mohd Ihwan Bin Zakariah, Universiti Malaysia Terengganu

Institute of Tropical Aquaculture and Fisheries (AKUATROP)

Sulfiana Sulfiana, Universitas Muhammadiyah Sorong

Department of Fishery Product Processing

Riskawati Riskawati, Universitas Muhammadiyah Sorong

Department of Agrotechnology

References

Akhter, N., Wu, B., Memon, A. M. & Mohsin, M. Probiotics and prebiotics associated with aquaculture: A review. Fish Shellfish Immunol 45, 733-741 (2015). https://doi.org:10.1016/j.fsi.2015.05.038

Cardoso, P. et al. Molecular engineering of antimicrobial peptides: microbial targets, peptide motifs and translation opportunities. Biophys Rev 13, 35-69 (2021). https://doi.org:10.1007/s12551-021-00784-y

Chiu, C. H., Guu, Y. K., Liu, C. H., Pan, T. M. & Cheng, W. Immune responses and gene expression in white shrimp, Litopenaeus vannamei, induced by Lactobacillus plantarum. Fish Shellfish Immunol 23, 364-377 (2007). https://doi.org:10.1016/j.fsi.2006.11.010

de Moraes, A. V. et al. Effects of microencapsulated probiotics-supplemented diet on growth, non-specific immunity, intestinal health and resistance of juvenile Nile tilapia challenged with Aeromonas hydrophila. Animal Feed Science and Technology 287 (2022). https://doi.org:10.1016/j.anifeedsci.2022.115286

Feliatra, F., Efendi, I. & Sugandi, E. Isolasi dan identifikasi bakteri probiotik dari ikan Kerapu Macan (Ephinephelus fuscogatus) dalam upaya efisiensi pakan ikan. Jurnal Natur Indonesia 6, 75-80 (2004).

Fujimori, S. Gastric acid level of humans must decrease in the future. World J Gastroenterol 26, 6706-6709 (2020). https://doi.org:10.3748/wjg.v26.i43.6706

Gropper, S. S., Simmons, K. P., Connell, L. J. & Ulrich, P. V. Changes in body weight, composition, and shape: a 4-year study of college students. Appl Physiol Nutr Metab 37, 1118-1123 (2012). https://doi.org:10.1139/h2012-139

Hashem, H. E., Nath, A. & Kumer, A. Synthesis, molecular docking, molecular dynamic, quantum calculation, and antibacterial activity of new Schiff base-metal complexes. Journal of Molecular Structure 1250 (2022). https://doi.org:10.1016/j.molstruc.2021.131915

Hendam, B. M. et al. Effects of water additive probiotic, Pediococcus acidilactici on growth performance, feed utilization, hematology, gene expression and disease resistance against Aspergillus flavus of Nile tilapia (Oreochromis niloticus). Animal Feed Science and Technology 303 (2023). https://doi.org:10.1016/j.anifeedsci.2023.115696

Leeman, J. E. et al. Patterns of treatment failure and postrecurrence outcomes among patients with locally advanced head and neck squamous cell carcinoma after chemoradiotherapy using modern radiation techniques. JAMA Oncol 3, 1487-1494 (2017). https://doi.org:10.1001/jamaoncol.2017.0973

Mallick, S. & Das, S. Acid-tolerant bacteria and prospects in industrial and environmental applications. Appl Microbiol Biotechnol 107, 3355-3374 (2023). https://doi.org:10.1007/s00253-023-12529-w

Ngalimat, M. S. et al. A Review on the biotechnological applications of the operational group Bacillus amyloliquefaciens. Microorganisms 9 (2021). https://doi.org:10.3390/microorganisms9030614

Ngatirah, A., Rahayu, E. S. & Utami, T. Seleksi bakteri asam laktat sebagai agensia probiotik yang berpotensi menurunkan kolesterol in Seminar Nasional Industri Pangan. (Perhimpunan Ahli Teknologi Pangan Indonesia, Surabaya, 2000).

Shleeva, M. O., Kondratieva, D. A. & Kaprelyants, A. S. Bacillus licheniformis: A producer of antimicrobial substances, including antimycobacterials, which are feasible for medical applications. Pharmaceutics 15 (2023). https://doi.org:10.3390/pharmaceutics15071893

Silva, D. R. et al. Probiotics as an alternative antimicrobial therapy: Current reality and future directions. Journal of Functional Foods 73 (2020). https://doi.org:10.1016/j.jff.2020.104080

Sukmawati, S. Identify of Floc-forming bacteria in shrimp pond in Pangkep district. BioScience 1 (2017). https://doi.org:10.24036/02017128060-0-00

Sukmawati, S. & Badaruddin, M. I. Screening of probiotic bacteria candidates in the Mangrove tourism area in Klawalu Sorong City West Papua. Bioscience 3 (2019). https://doi.org:10.24036/0201932105397-0-00

Yunita, M., Fahrizal, A. & Sukmawati, S. Pathogenicity analysis and application of probiotic bacteria in Catfish (Clarias sp.) cultivation in vivo. Malaysian Journal of Microbiology (2024). https://doi.org:10.21161/mjm.230299

Sukmawati, S. et al. Short communication: Bacterial diversity of mangrove ecosystem in Klawalu Sorong, West Papua, Indonesia. Biodiversitas Journal of Biological Diversity 23 (2022). https://doi.org:10.13057/biodiv/d230329

Tjiptoningsih, U. G. Uji daya hambat air perasan buah lemon (Citrus Limon (L.) Burm. F.) terhadap pertumbuhan bakteri aggregatibacter actinomycetemcomitans. Jurnal Ilmiah dan Teknologi Kedokteran Gigi 16, 86-96 (2021). https://doi.org:10.32509/jitekgi.v16i2.1100

Dwisandi, R. F., Mutiara, F., Nurfauziah, E. & Meylani, V. Effectiveness of indigenous local microorganisms in degrading hexavalent chromium (Cr(VI)) in Batik liquid waste. Biological. environ. pollut. 1, 19-29 (2021). https://doi.org:10.31763/bioenvipo.v1i1.383

Verma, D. K. et al. Bacteriocins as antimicrobial and preservative agents in food: Biosynthesis, separation and application. Food Bioscience 46 (2022). https://doi.org:10.1016/j.fbio.2022.101594

Vine, N. G. et al. Competition for attachment of aquaculture candidate probiotic and pathogenic bacteria on fish intestinal mucus. J Fish Dis 27, 319-326 (2004). https://doi.org:10.1111/j.1365-2761.2004.00542.x

Wang, L. et al. Surfactant induces ROS-mediated cell membrane permeabilization for the enhancement of mannatide production. Process Biochemistry 91, 172-180 (2020). https://doi.org:10.1016/j.procbio.2019.12.009

Xu, J. et al. Response mechanisms to acid stress of acid-resistant bacteria and biotechnological applications in the food industry. Crit Rev Biotechnol 43, 258-274 (2023). https://doi.org:10.1080/07388551.2021.2025335

Mendonca, A. A. et al. Journey of the probiotic bacteria: Survival of the fittest. Microorganisms 11 (2022). https://doi.org:10.3390/microorganisms11010095

Lee, A., Cheng, K. C. & Liu, J. R. Isolation and characterization of a Bacillus amyloliquefaciens strain with zearalenone removal ability and its probiotic potential. PLoS One 12, e0182220 (2017). https://doi.org:10.1371/journal.pone.0182220

He, Y. et al. Probiotic potential of Bacillus amyloliquefaciens isolated from tibetan yaks. Probiotics and Antimicrobial Proteins 16, 212-223 (2022). https://doi.org:10.1007/s12602-022-10027-5

Du, H. et al. Effects of Bacillus amyloliquefaciens TL106 isolated from tibetan pigs on probiotic potential and intestinal microbes in weaned piglets. Microbiol Spectr 10, e0120521 (2022). https://doi.org:10.1128/spectrum.01205-21

AlGburi, A. et al. Safety properties and probiotic potential of Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895. Advances in Microbiology 06, 432-452 (2016). https://doi.org:10.4236/aim.2016.66043

Downloads

Published

2024-06-30

How to Cite

1.
Sukmawati S, Hardianti F, Zakariah MIB, Sulfiana S, Riskawati R. Probiotic potential of bacterial isolates from Klawalu Mangrove: Physiological characterization. Biological. environ. pollut. [Internet]. 2024Jun.30 [cited 2024Nov.6];4(1):8-16. Available from: https://pubs.ascee.org/index.php/bioenvipo/article/view/779

Issue

Section

Articles