
Bulletin of Social Informatics Theory and Application ISSN 2614-0047

Vol. 7, No. 2, December 2023, pp. 83-91 83

https:doi.org/10.31763/businta.v7i2.635

One-gateway system in managing campus information system

using microservices architecture

Yulita Salim a,1, Ismunandar Muis a,2,*, Lukman Syafie a,3, Huzain Azis a,4, Abdul Rachman

Manga a,5

a Universitas Muslim Indonesia, Makassar, Indonesia
1 yulita.salim@umi.ac.id; 2 indarmuis.labfik@umi.ac.id; 3 lukman.syafie@umi.ac.id; 4 huzain.azis@umi.ac.id; 5 abdulrachman.manga@umi.ac.id

* corresponding author

1. Introduction

In the ongoing digital era, developing applications capable of managing information systems has
become vital for institutions or companies. Practical information systems have significantly benefitted
institutions or companies that have digitized most of their internal and external activities to meet these
challenges. Information technology and electronic communication have enhanced the potential for
information exchange within campuses [1]. However, with the rapid progress in information system
development, the need for more complex applications with higher scalability is growing [2].

The selection of the appropriate architecture in software development is crucial for organizing
code, managing business logic, and ensuring applications can be effectively developed, tested, and
maintained. The chosen architecture also influences the flexibility for future changes and application
development. In this context, various types of architecture are used in software development, such as
monolithic architecture, service-oriented architecture (SOA), object-oriented architecture, event-
driven architecture, and microservices architecture. Each architecture type has different characteristics
and design principles, and the selection of the suitable architecture depends heavily on the needs and
objectives of the application being developed.

In the ongoing development of a campus information system, selecting microservices architecture
is a relevant and appropriate step. Microservices architecture is a software development approach
where the overall software functionality is provided by smaller software components known as
microservices [3], [4]. Each microservice in this architecture focuses on a specific task or function,
allowing for better development and periodic system testing. This approach breaks down an extensive
application into separate independent applications or services, making managing and maintaining
complex campus information systems easier.

A R T I C L E I N F O A B S T R A C T

Article history

Received July 11, 2023

Revised July 30, 2023

Accepted November 24,2023

 Universitas Muslim Indonesia (UMI) has developed several applications for
managing the campus's digital information and management systems, both
internally and externally. However, several applications were previously created
in the development of information system applications at UMI. However, these
applications were not well-suited for long-term use due to their complexity and
lack of integration. Therefore, UMI aims to create a fully integrated and well-
managed campus information system by implementing the concept of
microservices. The microservices approach involves dividing large applications
into smaller interconnected components. This approach facilitates the
management of application systems and enables better integration. Moreover,
the microservices approach simplifies system maintenance for application
developers, as each application is separated into smaller components.

This is an open access article under the CC–BY-SA license.

Keywords

Information system

Microservice

Development

Application

Architecture

https://doi.org/10.31763/businta.v7i2.635
mailto:indarmuis.labfik@umi.ac.id
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

84 Bulletin of Social Informatics Theory and Application ISSN 2614-0047

 Vol. 7, No. 2, December 2023, pp. 83-91

 Salim et.al (One-gateway system in managing campus information system…)

In implementing microservices architecture for managing a campus information system, one key
aspect is utilizing a one-gateway system. A one-gateway system is an approach where a single gateway
controls access and connections between different microservices within the system. By leveraging a
one-gateway system, users can access various services through a single access point, enhancing
efficiency and user convenience when interacting with the campus information system. Moreover,
this approach enables efficient access management and request distribution.

Implementing microservices architecture utilizing a one-gateway system in managing a campus
information system brings significant advantages. This approach allows for better scalability, where
microservice components can be added or reduced independently as needed. Secondly, system
maintenance and development become easier and separated between each service. Thirdly,
microservices architecture enables development teams to work independently on each microservice
without disturbing other system parts [5]. Fourthly, with a one-gateway system, users can easily access
various services through a single access point, improving efficiency and providing a better user
experience.

Overall, implementing microservices architecture with the utilization of a one-gateway system in
managing a campus information system is a suitable and effective step in addressing the complexity
and scalability faced by educational institutions today. This approach enables more effective, efficient,
and well-organized development of campus information systems, offering long-term benefits in
application development and maintenance. By adopting microservices architecture and leveraging a
one-gateway system, campus information systems can adapt to evolving changes and needs while
delivering better services to users.

2. Method

The current development of the campus information system will employ the microservices
architecture approach, as illustrated in (Fig. 1).

Fig. 1. Microservice Architecture

The microservices architecture consists of several main components. The User Interface (UI)
directly interacts with users. The API Gateway manages access to the microservices and ensures
security. gRPC is an efficient communication protocol used between services. The microservices
perform specific tasks independently. Third-party services integrate external services. The Storage
database stores and manages data [6], [7]. By combining these components, the microservices
architecture allows for the development a distributed, modular system that can be rapidly customized.

2.1. Technology Used

The following are several technologies employed during the development of the campus
information system using microservices architecture :

• Design Tools

The design tool utilized for application development is Whimsical. Whimsical is a visual design
tool or platform used to create various types of diagrams or wireframes in an easily comprehensible
manner. Using Whimsical, users can depict ideas, design user interfaces, create flowcharts, and
generate other visual representations in software development projects, product design, or business
process modeling.

ISSN 2614-0047 Bulletin of Social Informatics Theory and Application 85
Vol. 7, No. 2, December 2023, pp. 83-91

 Salim et.al (One-gateway system in managing campus information system…)

• Front – End

Front-end is a crucial part of software development that directly interacts with users. In this
particular development, two Front-End technologies are utilized for the system: Website and
Mobile Application. Here are the explanations for each.

- Flutter

Flutter is a cross-platform application development framework developed by Google. Using
the Dart programming language, Flutter is designed to create rich and responsive user
interfaces for mobile, web, desktop, and embedded devices. To better understand how Flutter
works, refer to (Fig. 2).

Fig. 2. Flutter Framework Development Stages

(Fig. 2) illustrates the functioning of Flutter and the essential concepts that support
application performance. Native Code is employed for specific features unavailable within
the Flutter framework. Widget Rendering transforms visual components into screen displays.
The Platform Channel enables communication between Flutter and Native Code. Services are
background components responsible for managing network and data storage. The Platform
Canvas is used to render views on the target platform. Events encompass user interactions
facilitating real-time responsiveness [8], [9]. Familiarizing oneself with these concepts
empowers Flutter developers to build responsive, high-quality applications.

- Angular

Angular is an open-source web development framework developed by Google. Utilizing the
TypeScript programming language, Angular empowers developers to create complex and
dynamic web applications effortlessly. In this system development, Angular is utilized for
constructing the website's interface. For a clearer understanding of how Angular operates,
refer to (Fig. 3).

Fig. 3. Angular Component Modules

(Fig. 3) illustrates the architecture of Angular, which consists of several vital
components. The app Module is the primary root module that connects all the components,
services, and modules within the application. The Core Module contains the core application
code, including globally-used services and components. Shared Module functions as a module
that houses reusable components, services, and directives across different parts of the
application. Modules and Submodules are separate units that organize related functionalities
[10]. These concepts facilitate Angular applications' structured, modular, and easily
maintainable development.

• Backend Framework

- Golang Fiber

86 Bulletin of Social Informatics Theory and Application ISSN 2614-0047

 Vol. 7, No. 2, December 2023, pp. 83-91

 Salim et.al (One-gateway system in managing campus information system…)

Golang Fiber is a lightweight and fast web framework for the Go programming language. It
provides robust routing, middleware, and validation features to develop responsive web
applications. Golang Fiber enables developers to create high-performance APIs and web
applications quickly.

- gRPC

gRPC is a Remote Procedure Call (RPC) system developed by Google. It allows different
applications to communicate with each other through remote procedure calls. gRPC utilizes an
efficient communication protocol and supports various programming languages [11], [12].
With gRPC, developers can define messages and services in protocol buffer files,
automatically generating code for inter-application communication [13]. To comprehend how
gRPC operates, refer to (Fig. 4).

Fig. 4. gRPC Method Workflow

As shown in (Fig. 4), in the gRPC architecture, the "Service" serves as the contract that
defines the available operations on the server, while the "Stub" represents the client and is
used to communicate with the server. The service functions as an interface that defines the
methods callable by the client, while the stub provides locally callable methods for the client.
When the client calls a method on the stub, the stub packages the request, sends it to the server
over the network, and receives the response from the server [14]. Through the service and
stub collaboration, gRPC enables efficient and reliable communication between the client and
server.

- Swagger

Swagger is a framework for defining, building, and documenting RESTful APIs. It utilizes the
OpenAPI specification to describe APIs, including endpoints, parameters, and responses.
Swagger assists developers in generating structured and interactive documentation for APIs
built with Golang Fiber and gRPC. The OpenAPI structure of Swagger can be seen in (Fig. 5).

Fig. 5. Swagger OpenAPI Format

ISSN 2614-0047 Bulletin of Social Informatics Theory and Application 87
Vol. 7, No. 2, December 2023, pp. 83-91

 Salim et.al (One-gateway system in managing campus information system…)

• Version Control Ssytem

- Git

Git is a widely used and versatile version control system. It serves the purpose of tracking
changes in the source code of software projects. Git allows development teams to collaborate
effectively and manage source code efficiently. Within Git, repositories store all the code
versions, enabling developers to perform actions such as branching, merging changes, tagging
versions, and managing the history of changes [15].

- Gitlab

GitLab is a software development platform that utilizes Git as its primary version control
system. It provides a user-friendly web interface that facilitates developers' interaction with
Git repositories. In addition, GitLab offers various advanced features such as project lifecycle
management, issue tracking systems, CI/CD pipelines, and user permission management [16].
GitLab can be deployed on a local server or utilized as a cloud-based service through
GitLab.com, enabling seamless collaboration among development teams and efficient project
management.

2.2. Development Phases

In this system development, Agile is utilized as the development methodology. Agile is a flexible
and collaborative approach to software development, as depicted in (Fig. 6).

Fig. 6. Agile Software Development Life Cycle

The agile software development approach emphasizes adaptability, collaboration, and rapid
iterations. In Agile Development, development progresses incrementally, focusing on delivering
quick business value and responsiveness to changes. Teams work in short cycles called sprints, where
they continuously identify requirements, plan, develop, and test software [17]–[20]. Here are several
Agile phases.

• Planning and Analysis

The development team collaborates with stakeholders to understand project requirements and
objectives. They create a list of requirements and user stories that define the necessary features
or functions.

• Sprint Achievement

Work is planned and divided into short iterations called sprints. The team selects user stories
from the backlog (list of requirements) to be worked on during the sprint for several weeks.

• Design and Development

The development team designs solutions and develops software based on the selected user stories.
This process involves prototyping, testing, and iterative refinement to ensure the quality and
suitability of the developed solution.

• Testing and Integration

Once development is completed, testing is conducted to verify the quality of the software. This
includes functionality, integration, and performance testing to ensure proper functionality and
alignment with user needs.

88 Bulletin of Social Informatics Theory and Application ISSN 2614-0047

 Vol. 7, No. 2, December 2023, pp. 83-91

 Salim et.al (One-gateway system in managing campus information system…)

• Evaluation and Adjustment

After each sprint, the team and stakeholders conduct evaluations to measure success and improve
the development process. Retrospective discussions are held to identify what worked well, areas
for improvement, and how to enhance the overall process

• Selection and Planning of the Next Sprint

Based on retrospective findings and stakeholder feedback, the team selects items from the
product backlog for development in the next sprint.

3. Results and Discussion

Microservices architecture is an innovative approach to designing and managing information
systems, including in the context of campus information system management. In implementing the
one-gateway system, the user interface in the form of mobile applications and websites serves as the
primary channels for users to interact with the system. The architecture diagram of the microservices
can be seen in (Fig. 7).

Fig. 7. Campus Information System Using Microservice Architecture

Each microservice within the microservices architecture has separate responsibilities and provides
specific functionalities. For example, there are services such as Personnel Services, Financial Services,
and other relevant services to the campus information system. Each service requests and receives
responses from other services using the gRPC protocol. The relationships between these services in
the microservices architecture are also depicted in (Fig. 7). Furthermore, each microservice interacts
with a database to access and manipulate the required data. Each service has limited access to the
database based on its responsibilities and functionalities. The campus information system can be
organized into separate and well-managed components by employing the microservices architecture,
enhancing flexibility, scalability, and overall system reliability. In implementing the microservices
architecture for the campus information system, the user interface can be accessed through a website
developed using Angular and a mobile application built with Flutter. For the website implementation,
the user interface is developed using the Angular framework, which enables the creation of responsive
and interactive user interfaces. (Fig. 8) illustrates the architecture implementation on the website using
Angular.

Fig. 8. Interface Website Implementation

ISSN 2614-0047 Bulletin of Social Informatics Theory and Application 89
Vol. 7, No. 2, December 2023, pp. 83-91

 Salim et.al (One-gateway system in managing campus information system…)

In addition to the website, the campus information system can be accessed through a mobile
application developed using the Flutter framework. Flutter allows for the rapid development of cross-
platform mobile applications for both Android and iOS. (Fig. 9) depicts the architecture
implementation for the mobile application using Flutter.

Fig. 9. Interface Mobile Implementation

(Fig. 9) illustrates how the user interface in the mobile application interacts with the one-gateway
system through the API Gateway. Users perform operations or requests through the mobile
application, which are sent through the API Gateway to the relevant microservices. The services then
query the database to access and manipulate the required data. The service responses are sent back
through the API Gateway and displayed on the user interface in the mobile application.

The campus information system can be accessed through various platforms with customized user
interfaces by utilizing Angular for the website and Flutter for the mobile application implementation.
The microservices architecture enables seamless communication between these components, with the
one-gateway system serving as the single entry point. As a result, users can easily access and interact
with the campus information system through the website and mobile application according to their
preferences and needs.

4. Conclusion

Based on the system development conducted, implementing the One-Gateway System using a
microservices architecture has proven effective and efficient in managing the campus information
system. This approach utilizes a single entry point (One-Gateway System) to integrate and manage
various microservices within the campus environment. The microservices architecture can build the
campus information system with separate and independent components, providing better scalability,
flexibility, and scalability. The One-Gateway System is crucial in connecting users to these services,
managing authentication and authorization, and providing a uniform and user-friendly interface.
Implementing the One-Gateway System brings significant benefits, such as improved security with
better access control, reduced complexity in service management, and increased productivity in
developing and maintaining the campus information system. However, challenges such as gateway
system scalability, coordination among development teams, and management of microservice
versioning need to be carefully addressed and handled through further research and development.

90 Bulletin of Social Informatics Theory and Application ISSN 2614-0047

 Vol. 7, No. 2, December 2023, pp. 83-91

 Salim et.al (One-gateway system in managing campus information system…)

Implementing the One-Gateway System with a microservices architecture offers a promising
approach to managing the campus information system. This article provides a strong foundation for
developers and IT professionals to design and implement an efficient and integrated campus
information system. By leveraging the significant benefits offered by this approach and carefully
addressing the existing challenges, educational institutions can obtain optimal advantages from their
information technology infrastructure.

References
[1] R. Malhotra, D. Kumar, and D. P. Gupta, “An android application for campus information system,”

Procedia Comput. Sci., vol. 172, pp. 863–868, 2020, doi: 10.1016/j.procs.2020.05.124.

[2] A. Cohen, “Analysis of student activity in web-supported courses as a tool for predicting dropout,”

Educ. Technol. Res. Dev., vol. 65, no. 5, pp. 1285–1304, Oct. 2017, doi: 10.1007/s11423-017-9524-3.

[3] K. Bakshi, “Microservices-based software architecture and approaches,” in 2017 IEEE Aerospace

Conference, Mar. 2017, pp. 1–8, doi: 10.1109/AERO.2017.7943959.

[4] O. Zimmermann, “Microservices tenets,” Comput. Sci. - Res. Dev., vol. 32, no. 3–4, pp. 301–310, Jul.

2017, doi: 10.1007/s00450-016-0337-0.

[5] F. Freitas, A. Ferreira, and J. Cunha, “A methodology for refactoring ORM-based monolithic web

applications into microservices,” J. Comput. Lang., vol. 75, no. April, p. 101205, 2023, doi:

10.1016/j.cola.2023.101205.

[6] H. Suryotrisongko, D. P. Jayanto, and A. Tjahyanto, “Design and Development of Backend Application

for Public Complaint Systems Using Microservice Spring Boot,” Procedia Comput. Sci., vol. 124, pp.

736–743, 2017, doi: 10.1016/j.procs.2017.12.212.

[7] A. Pavlenko, N. Askarbekuly, S. Megha, and M. Mazzara, “Micro-frontends: Application of

microservices to web front-ends,” J. Internet Serv. Inf. Secur., vol. 10, no. 2, pp. 49–66, 2020. [Online].

Available at : https://jisis.org/wp-content/uploads/2022/11/jisis-2020-vol10-no2-04.pdf.

[8] O. M. A. AL-atraqchi, “A Proposed Model for Build a Secure Restful API to Connect between Server

Side and Mobile Application Using Laravel Framework with Flutter Toolkits,” Cihan Univ. Sci. J., vol.

6, no. 2, pp. 28–35, 2022, doi: 10.24086/cuesj.v6n2y2022.pp28-35.

[9] N. Simiriotis and R. Palacios, “A Flutter Prediction Framework in the Open-Source SU2 Suite,” AIAA

Sci. Technol. Forum Expo. AIAA SciTech Forum 2022, pp. 1–15, 2022, doi: 10.2514/6.2022-1327.

[10] K. Bielak, B. Borek, and M. Plechawska-Wójcik, “Web application performance analysis using

Angular, React and Vue.js frameworks,” J. Comput. Sci. Inst., vol. 23, no. November 2021, pp. 77–83,

2022, doi: 10.35784/jcsi.2827.

[11] C. Nimpattanavong, I. Khan, T. Van Nguyen, R. Thawonmas, W. Choensawat, and K.

Sookhanaphibarn, “Improving Data Transfer Efficiency for AIs in the DareFightingICE using gRPC,”

arXiv Networking and Internet Architecture, pp. 1- 5, 2023, doi : 10.1109/ICBIR57571.2023.10147629.

[12] C. H. V. P. Krishna and R. R. Kumar, “Implimentation Of Weighted Round Robin Load Balancing

Algorithem For Grpc,” vol. 9, no. 7, pp. 1–9, 2022. [Online]. Available at :

https://tijer.org/papers/TIJER2207001.pdf.

[13] S. Saberian, “Evaluating the performance and usability of HTTP vs gRPC in communication between

microservices Najem Hamo,” no. May, p. 56, 2023. [Online]. Available at: https://www.diva-

portal.org/smash/get/diva2:1768795/FULLTEXT02.

[14] M. Bolanowski et al., “Eficiency of REST and gRPC Realizing Communication Tasks in Microservice-

Based Ecosystems,” Front. Artif. Intell. Appl., vol. 355, pp. 97–108, 2022, doi: 10.3233/FAIA220242.

[15] S. Sterman, M. J. Nicholas, and E. Paulos, “Towards Creative Version Control,” Proc. ACM Human-

Computer Interact., vol. 6, no. 2 CSCW, pp. 1–25, 2022, doi: 10.1145/3555756.

[16] R. Ls, W. Forrest, R. L. S. Frisbie, P. Grete, and F. W. Glines, “An Inquiry Approach to Teaching

Sustainable Software Development with Collaborative Version Control,” 2022. [Online]. Available at:

https://escholarship.org/uc/item/6fv1s464.

https://doi.org/10.1016/j.procs.2020.05.124
https://doi.org/10.1007/s11423-017-9524-3
https://doi.org/10.1109/AERO.2017.7943959
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1016/j.cola.2023.101205
https://doi.org/10.1016/j.procs.2017.12.212
https://jisis.org/wp-content/uploads/2022/11/jisis-2020-vol10-no2-04.pdf
https://doi.org/10.24086/cuesj.v6n2y2022.pp28-35
https://doi.org/10.2514/6.2022-1327
https://doi.org/10.35784/jcsi.2827
https://doi.org/10.1109/ICBIR57571.2023.10147629
https://tijer.org/papers/TIJER2207001.pdf
https://www.diva-portal.org/smash/get/diva2:1768795/FULLTEXT02
https://www.diva-portal.org/smash/get/diva2:1768795/FULLTEXT02
https://doi.org/10.3233/FAIA220242
https://doi.org/10.1145/3555756
https://escholarship.org/uc/item/6fv1s464

ISSN 2614-0047 Bulletin of Social Informatics Theory and Application 91
Vol. 7, No. 2, December 2023, pp. 83-91

 Salim et.al (One-gateway system in managing campus information system…)

[17] A. Hinderks, F. J. Domínguez Mayo, J. Thomaschewski, and M. J. Escalona, “Approaches to manage

the user experience process in Agile software development: A systematic literature review,” Inf. Softw.

Technol., vol. 150, no. September 2021, p. 106957, 2022, doi: 10.1016/j.infsof.2022.106957.

[18] L. Gren and P. Ralph, “What Makes Effective Leadership in Agile Software Development Teams?,”

Proc. - Int. Conf. Softw. Eng., vol. 2022-May, pp. 2402–2414, 2022, doi: 10.1145/3510003.3510100.

[19] R. Ouriques, K. Wnuk, T. Gorschek, and R. B. Svensson, “The role of knowledge-based resources in

Agile Software Development contexts,” J. Syst. Softw., vol. 197, p. 111572, 2023, doi:

10.1016/j.jss.2022.111572.

[20] K. Bernsmed, D. S. Cruzes, M. G. Jaatun, and M. Iovan, “Adopting threat modelling in agile software

development projects,” J. Syst. Softw., vol. 183, pp. 1–21, 2022, doi: 10.1016/j.jss.2021.111090.

https://doi.org/10.1016/j.infsof.2022.106957
https://doi.org/10.1145/3510003.3510100
https://doi.org/10.1016/j.jss.2022.111572
https://doi.org/10.1016/j.jss.2021.111090

