
Bulletin of Social Informatics Theory and Application ISSN 2614-0047

Vol. 7, No. 2, December 2023, pp. 125-140 125

https:doi.org/10.31763/businta.v7i2.649

Effects of using problem-solving guide and explanatory support

in program visualization tool on reducing students’

misconceptions in learning data structure concepts

Adam B. Mtaho a,1,*

a Arusha Technical College, Arusha, Tanzania
1 abasigie@yahoo.com

* corresponding author

1. Introduction

Data Structures and Algorithms (DSA) course is essential in Computer Science (CS) and
engineering disciplines. DSA is an advanced level programming course that is mandatory for any CS
student. It enables students to develop conceptual, strategic, problem-solving, and analytical thinking
skills. To achieve this goal, the subject demands the learner’s possession of a multitude of basic
programming skills, such as knowledge of language syntax, program planning, problem solving, and
algorithm analysis. However, learning data structures is very challenging and frustrating for novice
programmers [1]. Due to its complexity, learning data structures causes students misconceptions [2]–
[7]. Such misconceptions exhibit in using various data structures elements such as pointers [8]–[10],
heap [11]–[13], recursions [14], [15], and linked lists [15], [16]. Misconceptions in learning DSA are
attributed to the abstract nature of the course, high elementary activity, and dynamic nature of the data
tructures concepts. The consequence of such misconceptions is high failure and dropout rates in
computer science education.

The authors in [17] asserts that many misconceptions in learning to program occur because students
do not see how program elements are executed inside the computer memory. Nevertheless, most
conventional approaches such as lectures that are currently used in teaching programming do not

A R T I C L E I N F O A B S T R A C T

Article history

Received August 9, 2023

Revised August 18, 2023

Accepted November 4, 2023

 The tendency of novice programmers to hold misconceptions when learning
data structures is one of the challenges that novice programmers face in
computer science education. Holding misconceptions can result in students’
demotivation and high failure rates in learning the subject. This article presents
the findings of an experimental study that was conducted to examine effects of
using problem solving guide and supportive explanations in program
visualization tool on reducing students’ misconceptions in learning data
structure concept. The subject of the study 83 students pursuing a C122 data
structures at the College of Informatics and Virtual Education of the University
of Dodoma. The design chosen was a single factor between the experiment
designs, with the number of errors committed by the students when writing
programs as a dependent variable. The experimental group l were ins instructed
by using CeliotM, while the control group received instruction using the
conventional lecture method. Results show that the use of CeliotM significantly
reduced student’s misconceptions in learning data structures courses compared
to the conventional lecture method. The study's important findings suggest that
applying sufficient guidance and explanatory support within program
visualization an effective teaching strategy for reducing students’
misconceptions in learning data structures concepts.

This is an open access article under the CC–BY-SA license.

Keywords

Misconceptions

Program visualization tool

Data structures

Explanatory support

Problem solving guide

https://doi.org/10.31763/businta.v7i2.649
mailto:abasigie@yahoo.com
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

126 Bulletin of Social Informatics Theory and Application ISSN 2614-0047

 Vol. 7, No. 2, December 2023, pp. 125-140

 Adam B. Mtaho (Effects of using problem-solving guide and explanatory support…)

effectively engage students in dealing with aspects that are hidden within the execution-time world of
the notional machine, leading to students misconceptions [18]. Studies have revealed that there exist
different types of misconceptions that students tend to hold when learning DSA [1]–[6] [19]. Prior
studies have shown that the teaching strategies that engage students towards achieving all four levels
of learning programming i.e., syntactic, semantic, schematic, and strategic can help reduce students
misconceptions in learning programming [20]. However, most strategies that are used in teaching data
structures apply the use algorithm visualizations (AV). Such tools have less engaging features that
guides student for successfully learning DSA concepts [21]–[24].

To address this study gap, this study delineates a novel strategy that utilizes a problem-solving
guide and supportive explanations within the CeliotM program visualization tool as an attempt to
reduce students’ misconceptions in learning data structures among undergraduate students enrolled in
the DSA course at the University of Dodoma. To the best of my knowledge, no study so far has
examined the impact of using the proposed strategy in teaching DSA course. The remainder of the
study is structured as follows: A literature review is presented in Section 2. Section 3 presents the
proposed teaching strategy. Study methodology is discussed in section 4. The research findings and
discussions are presented in section 5. The conclusion is presented in section 6.Literature review.

1.1. Misconceptions in Learning programming

The authors in [25] define the term "misconception" as an incorrect understanding of a concept or
a set of concepts that leads to mistakes in writing or reading programs. According to [26],
misconceptions occur when a programmer commits an error on a programming task. Misconceptions
in learning programming dominate when the students lack syntactic, schematic, strategic, and
conceptual knowledge [20], [27]. Syntactic knowledge is concerned with specific facts regarding a
programming language and deals with the rules governing its use [4]. It just focuses on the program
that will compile, not necessarily that it will provide a valid and viable solution to the problem [27].
A student who fails to use the correct syntax when writing a program is said to commit syntax errors.
An example of a syntax error is a reference to undeclared variables, that is, writing cin>>x; without
int x in C++. Schematic knowledge is defined as one’s ability to recognize patterns in codes developed
for previous problems, also known as programming plans, and apply them to form a solution for the
current problem [20].

A student who fails to identify which method or what constructs to use to solve a given problem is
said to commit schematic error. An example of a schematic error is using ‘for loop’ instead of nested
for loop or using while loop instead of for loop. Strategic knowledge is defined as one’s ability to
solve programming problems that are more complex and beyond those that have been encountered
before [20]. More specifically, strategic knowledge of programming refers to expert-level knowledge
about planning, writing, and debugging programs for solving novel problems using syntactic and
conceptual knowledge [27]. A student who fails to interpret the problem or question that he or she has
been asked to solve is said to commit strategic errors. A strategic errors occurs when a programmer
fails to include certain program component, e.g., the absence of a ‘for loop’ when this is an explicit
requirement of the question/problem to be solved.

1.2. Causes of the misconceptions in Learning DSA course

DSA is reported as one of the most difficult curse to learn in CS education. Unlike introductory
programming, the understanding of DSA depends on the learner's possession of a multitude of basic
programming skills such as knowledge of problem-solving approach, program-planning, and syntax
skills [28]. According to [28], due to the task complexity, there is a diverse range of misconceptions
in learning data structures. For example, there are some misconceptions that students commit when
trying to understand how different algorithms work [29] misconceptions on how to use such
algorithms to manipulate data structures within the program [30] misconceptions in planning for a
solution, and problems in debugging and tracing [28]. There are also misconceptions in
understanding some of the fundamental programming concepts, such as nested loops, recursion, and
linked lists, which are sources of difficulty [1]. There are also misconceptions in implementing
pointers [10], recursion [15], [31], [32], linked lists, and heaps [33]. The misconceptions in learning
DSA exist during the entire learning period, and they manifest themselves in the syntax, semantic,
schematic, and strategic domains.

The difficulty of understanding the dynamic nature of algorithm states is another cause of a high
misconception [30], [34] Such difficulty relies on the algorithm itself which is derived from the

ISSN 2614-0047 Bulletin of Social Informatics Theory and Application 127
Vol. 7, No. 2, December 2023, pp. 125-140

 Adam B. Mtaho (Effects of using problem-solving guide and explanatory support…)

dynamic step-by-step processes [34]. A dynamic view of a program brings together program codes,
the state of the program, and the process that changes it, as well as the computer on which the program
runs [if not the actual hardware, at least a notional machine [35]. Studies have also found that students
who learn DSA have misconceptions in planning solutions. Even if they can plan, they end up
developing an abstract plan that does not solve a given problem [28], [36]. Some students cannot
form a plan from scratch; they try to wrongly use previously used plans to solve new problems. The
authors in [37] claim that when learning programming, inexperienced programmers without strategic
knowledge occasionally produce code that functions as intended in certain common but not all
circumstances. In some circumstances, novices may become disoriented or completely fail to
recognize where to begin. Some students could attempt to plan a potential course of action, but crucial
components or interactions might be missed.

1.3. Empirical studies on students’ misconceptions in learning DSA

Several studies have examined misconceptions in learning DSA. Some of these studies are those
of [38]–[40], and [33]. The authors in [39] conducted the study to determine misconceptions held by
students related to heaps and binary search trees. They found that some students showed passive
knowledge of the formal definition of a heap. They failed to differentiate heaps with binary search
trees. The authors in [40] also conducted the survey to examine students perceived level of difficulty
in learning CS2 at West Coast University, USA. They found that students tend to confuse DSA
concepts, even if they can conceptually state them, but in reality they can implement the same thing
´differently. Some students also have difficulties comprehending how some algorithms, such as merge
sort and quick sort, work [40]. The author in [38] examined the types of errors mostly committed by
students whom they called "advanced novice programmers".

Their studies focused on nested loops, arrays, and recursion. They found that even after being
taught in the classes, such students fail to understand basic constructs such as nested loops and
recursions, which they have studied in previous classes [38]. Also, [33] examined students' procedural
comprehension of particular linked list operation for 249 students who were enrolled in Java CS2
course. Students performance results were as follows: 16% of those students failed to update the tail
pointer, 12% incorrectly attached the new node, and 10% needlessly looped through the list to find
the tail when asked to add a node to the end of a list. Additionally, they discovered that some students
were misinformed about double-linked lists and thought that a double-linked list could be
simultaneously searched in both directions.

Most students relied mainly on memorization of data structures principles and lacked the practical
skills necessary to apply plan and implement the data structures programs. Studies show that teaching
programming using program visualization (PV) tools that actively engage learners help reduce
student’s misconceptions in learning to program and hence improves students programing
comprehension [41]–[46].

1.4. Visualization in learning programming

Visualization are concrete models that are used in various discipline mostly in science and
engineering fields. They are used to provide a clear visual metaphor for explaining conception or
operations that are taking place behind the “scene” from the viewers’ point of views eye. More
specifically, visualization are used to make visible actions that are taking place in the invisible world.
In Computer science such visualizations are categorized as AV and PV). Both AV and PV tools have
been used in teaching and learning programming. But they differ in terms of scope, design and use.
According Bergin et al., [46]. PV tools focus on the graphical representation of an executing program
and its data. In PVs, data, code and events of interest are visualized at the low level of abstraction.
AVs on other hand show operations fundamental to an algorithm, as opposed to just code and data.
Despite the significant differences between program and algorithm animation systems, both cases,
each tool is being used to visualize the dynamic execution of a static description [46].

In early days of computer science education PVs were used to teach introductory programming
concepts, while algorithm AVs were mainly used to teach data structures. However, studies have
shown that the use of AVs for teaching DSA is not pedagogically effective since such teaching strategy
has put much emphasis on conceptual knowledge [22], [47] , with less emphasis on strategic, syntactic
and schematic skills, resulting in student’s misconceptions and frustrations in writing programs [22],
[48], [49]. For that matter, recent studies have recommended the use of PV tools instead of just AVs
as a strategy to help students effectively understand the DSA course [22]. To ensure that PV help

128 Bulletin of Social Informatics Theory and Application ISSN 2614-0047

 Vol. 7, No. 2, December 2023, pp. 125-140

 Adam B. Mtaho (Effects of using problem-solving guide and explanatory support…)

students clearly understand data structure concepts earlier studies have recommended the designed
PV tools to ensure that (i) they provide resources that help learners interpret the graphical
representation. (ii) Provides supportive explanation that will help map a visualization to the underlying
algorithm it is designed to represent (iii) Ensure that learners are provided dynamic feedback on their
activities rather static ones (iv) Complement visualizations with explanations for better understanding
[43], [46], [47]. This studiy aimed at examining the effects of using problem-solving guide and
explanatory support within PV tool on reducing students’ misconceptions in learning data structure
concepts.

2. The Teaching Strategy

The proposed teaching strategy employs the use CeliotM PV tool [10]. CeliotM is a PV tool
designed to help new programmers learn and understand data structures in C++ [10]. The tool
functions as a compiler, AV, and PV. In contrast to pure animation software, CeliotM offers a
comprehensive learning and programming environment, making it more enjoyable and suitable for
novice programmers. In this section, we briefly describe three learners’ engagement features in
CeliotM that played crucial roles in this study. Such features are (i) problem solving guide, (ii) an
informative error message support, (iii) system generated and user’s defined explanations, and (iv)
memory address explanations.

2.1. Problem-solving guide

Research reveals that novices cannot solve problems well unless they are well guided. However,
according to [52], guiding students on how to effectively program has always been ignored by many
instructors. In order to help students understand programming problems, interpret them, and
implement problem solutions correctly, prior to attempting any programming problem, CeliotM
provides a general guide for solving the problem-based exercises. Thus, the framework guides the
instructors on how students should deal with programming questions or problems. The feature
prompts automatically when the exercise feature of the tool is opened. Each instructor and student
were supposed to use this framework. Fig. 1 shows a snapshot of the CeliotM with guidelines for
solving programming problems.

Fig. 1. Problem solving guide

Fig. 2 shows the general instructions for problem-solving questions.

ISSN 2614-0047 Bulletin of Social Informatics Theory and Application 129
Vol. 7, No. 2, December 2023, pp. 125-140

 Adam B. Mtaho (Effects of using problem-solving guide and explanatory support…)

General instructions for problem-solving questions

Before you work on problem-based questions, we advise you to read the following guidelines for

effectiveness:

1. Read the question carefully. Make sure you understand clearly what the question is all

about.

2. Plan for your solution, that is, identify clearly what the possible input, processing, and

output will be.

3. Ask yourself, what data will be inputted into the program? (int, string, float, etc.)

4. During processing, identify all the necessary steps that will be required to process,

compute the solution, or produce output. Ask yourself: What is the algorithm required to

operate on the input to produce the desired output? What calculations are needed? Do any

validation checks need to be applied to the input data to ensure that it is acceptable? Do

any totals or counters need to be accumulated? etc.

5. At the output stage, the questions that the programmer has to ask himself are such as:

What are the structures, content, and format of the required output? Is the data to be

printed, displayed on a screen, or written to secondary storage? etc.

6. Identify the appropriate constructs (such as for loop, if, array, pointer, etc.) to be used in

a given problem.

7. Adhere to the programming syntax and semantic rules.

8. Include all necessary header files and libraries (if any) that will be used in the program.

9. Test your program for both syntax, semantic, and logical errors.

10. Document your program. Include static comments and dynamic comments (user

explanations for CeliotM) if required.

11. By using the C++ compiler, compile any program the written program.

12. Using visualization to compile and visualize the program.

Fig. 2. General instructions for problem-solving questions

According to the above guide, students were supposed to follow this guide when attempting to
solve a problem. For example, given the question: Write a program that prompts users to write their
first name, middle name, last name, age, and salary, and then returns the output in the ascending order
of the salary. Given the problem that demands the use of data structures and algorithms, the students
were guided step by step by using this guide.

They were guided on how to interpret the question, prepare the algorithm and pseudocode, and
then write the code, run the animation where necessary to get a full view of the programming logic,
and debug the program. It was hypothesized that a student who uses problem-solving guidance along
with supportive explanations in CeliotM will improve his or her programming writing skills and hence
commit fewer errors in learning DSA courses.

2.2. Informative error message support

Unclear messages that the compiler provides to the users are sources of confusion for many novice
programmers [53], [54]. CeliotM has managed to address this problem by introducing an informative
error message. The informative error message feature enables users to automatically identify the line
where a syntactical or semantic error has occurred. Fig. 3 illustrates how CeliotM clearly shows a
syntax error at line 19, which has resulted after compiling the program with a missing semicolon (;)
at the end of the code statement.

The message in the error panel reads: Syntax error, at line 19, column 1, and a semicolon is missing
in the return statement. Thus, unlike the traditional compiler, which returns several error messages for
just one syntax error, this feature reports just one error, while indicating the exact location where an
error has occurred.

130 Bulletin of Social Informatics Theory and Application ISSN 2614-0047

 Vol. 7, No. 2, December 2023, pp. 125-140

 Adam B. Mtaho (Effects of using problem-solving guide and explanatory support…)

Fig. 3. The informative error message in CeliotM (Syntax error message)

Fig. 4 1also shows informative error message describing the occurrence of the semantic error in
the program. The message in the error panel indicates the type of semantic error that has occurred, the
exact position in the program (line and column number) where it has happened, and the reason why
such an error has happened.

Fig. 4. The informative error message in CeliotM (Semantic error message)

It was expected that the provision of informative error messages in CeliotM would help build
students' syntactic and semantic knowledge and enhance students' debugging skills.

2.3. System and user-defined explanations

Lack of conceptual understanding of how the program executes remains the biggest challenge for
novices. It also leads to the inability of the students to imagine what happens when lines of code
execute, thus affecting their ability to write correct programs. For this reason, the system and user-
defined explanation features were provided within CeliotM. By using this feature, learners can
visually see and interpret what happens when the program is executed. While system explanations are
automatically generated by the system, user-defined explanations are user-generated. Thus, in this
tool, when the system-defined explanation button is turned on, the learner can actively see and learn
what is going on when each construct in the code is executed. Fig. 4 shows a system explanation

ISSN 2614-0047 Bulletin of Social Informatics Theory and Application 131
Vol. 7, No. 2, December 2023, pp. 125-140

 Adam B. Mtaho (Effects of using problem-solving guide and explanatory support…)

describing when variable assignment operations occur during program execution. As shown in Fig. 5,
when line 14 is executed by the machine, a message "(int) 10 is assigned to a variable of type int" will
appear to help the user actively understand the program execution.

Fig. 5. System defined explanation.

Fig. 6 shows CeliotM with the user-defined explanation feature enabled. A user-defined
explanation feature allows the user to write comments to explain what the code does. In this example,
the instructor has written a comment on line 14 of the program that states that: "This line declares the
array object that can store five integers". This comment is not visible in the code view but will appear
in the animation view when line 14 is executed. Through the use of such explanatory features, a learner
is helped to map and interpret how a given program statement or algorithm executes in the notional
machine.

Fig. 6. User- defined explanation

It was hypothesized that including the system and use-defined explanation inside the tool and
allowing instructors to apply such features when teaching the students would help increase students
schematic and strategic skills in learning data structures, and hence reduce students misconceptions
in planning and writing programs.

132 Bulletin of Social Informatics Theory and Application ISSN 2614-0047

 Vol. 7, No. 2, December 2023, pp. 125-140

 Adam B. Mtaho (Effects of using problem-solving guide and explanatory support…)

2.4. Memory address explanation

The function of memory addressing is to find the definite memory location that is used when the
program is executed in the computer. This feature is an integral part of all pointer operations performed
in any C++ program. Without it, pointer operations are not possible. Fig. 7 show that apart from
viewing state changes and algorithm execution, CeliotM enable users to view both memory occupied
as well as address. It is expected the student who view dynamically how memory address are assigned
and referenced will clearly understand the logic behind the working behind pointers, linked list and
other data structures operation that involve manipulation of memory address.

Fig. 7. Memory address explanation

2.5. Support of Data Structures Visualization

CeliotM supports all linear data structures such as linked lists, queues, and stacks. Fig. 8 shows the
simple C++ linked list structure program. The source code view contains the source codes, while the
animation view supports animations. The source code may also be compiled using the C++ compiler.

Fig. 8. Simple linked program before animation in CeliotM

ISSN 2614-0047 Bulletin of Social Informatics Theory and Application 133
Vol. 7, No. 2, December 2023, pp. 125-140

 Adam B. Mtaho (Effects of using problem-solving guide and explanatory support…)

Fig. 9 shows the animation of the simple liked list program at the instance when line 14 is executed.

Fig. 9. Animation state of a linked list program during the execution of line 14

By using the tool, a user can view how the linked list works step by step, from node creation to
node update, insertion, and deletion. The tool displays how the memory space is utilized and variable
addresses are assigned in computer memory during program execution, thus helping the learner
understand clearly how the pointer works in a linked list program. The tool shows the animation of a
simple linked list program. It visually displays the entire execution cycle, starting from how data is
input to the data fields of nodes a and b, how the memory address of node b is assigned to the next
field, how node a is assigned to the next field, and how node a is set to NULL. Fig. 10 shows the final
program animation state when the linked list program is fully executed.

Fig. 10. Final program animation state in CeliotM

Through the use of CeloitM learners were able to plan, write, compile, visualize and debug various
data structures concepts. The inclusion of exercises and examples in the CeliotM was expected to help
minimize misconceptions in learning data structures, hence, improve students’ programming
comprehension.

134 Bulletin of Social Informatics Theory and Application ISSN 2614-0047

 Vol. 7, No. 2, December 2023, pp. 125-140

 Adam B. Mtaho (Effects of using problem-solving guide and explanatory support…)

3. Method

3.1. Study objective

The aim of this study was therefore to test if the use of CeliotM along with a problem-solving
guide, an informative error message, a system, and user-defined explanations would reduce students’
misconceptions (syntax, semantic, schematic, and strategic errors) and hence improve students’
comprehension in learning data structure concepts compared to the traditional lecture method.

3.2. Research design

In this study, an experiment-research design was used. The experiment was conducted at the
College of Informatics and Virtual Education of the University of Dodoma, in 2019. The experiment
was set up as a single factor, with a number of errors the students made when coding programs as the
dependent variable. The two independent variables were (i) teaching and learning data structures using
a conventional approach; and (ii) teaching and learning data structures using a conventional lecture
method combined with the CeliotM framework. The number of error committed by students in writing
computer program was a dependent variable. The dependent variable was measured by counting the
frequencies of each error committed by students and computing the average of its occurrence.

3.3. Participants

The target population was the undergraduate students studying DSA course at the College of
informatics and virtual Education of the University of Dodoma. A total of eighty-three (83) students’
examination CS 122 scripts served as the sample for the experiment. These scripts were chosen at
random from the 2017/2018 and 2018/2019 exam scripts. A total of 43 exam scripts drawn at random
from 972 exam script of 2019/2020 academic year constituted the experimental group, while the 40
scripts drawn at random from 894 exam scripts of academic year 2017/2018 constituted the control
group. The proposed strategy together with lecture method was used to teach the students the CS 122
course during the second semester of the academic year 2019/2020 (the experimental group), while
the traditional lecture method was used to teach the same course to the students in the academic year
2017/2018 (control group). Arrays, structures, pointers, linked lists, queues, stacks, trees, graphs,
sorting algorithms, and searching algorithmic forms were all covered in the course syllabus. The
course took 52 hours to complete, of which 26 were spent in lectures and 26 in labs. All of these
students received the same instruction from the same instructors and were evaluated using the same
evaluation standards.

3.4. Hypotheses to be validated

To validate if using a problem-solving guide and explanatory support in a PV tool would help
reduce students’ misconceptions in learning data structure concepts and hence improve students’
comprehension of the learning data structure course compared to the traditional lecture method or not,
the following conjectures were formulated: (i) The null hypothesis, which states that the mean number
of errors committed by students from the two groups is equal: Hp0): µcontrol = μexperimental,
implying that there is no statistical difference in the number of errors committed between the two
groups.(ii). The alternative hypothesis states that the mean number of errors committed by students
from all groups is not equal µcontrol ≠ μexperimental, implying that there exists a significant statistical
difference in the number of errors committed between the two groups. In this study, it was predicted
that students who were instructed data structures using CeliotM (the experimental group) would
commit fewer errors compared to the conventional lecture method (the control group.

3.5. Tools and Materials

The tools used were Borland C++ Compiler V.5.5 and CeliotM, while the materials used were
examination scripts, an error protocol, a C++ textbook, and a user manual. All practical work and
demonstrations involved lectures with visualizations. The manual covered the topics of arrays,
structures, pointers, linked lists, queues, stacks, trees, graphs, sorting algorithms, and searching
algorithms.

3.6. Error protocol

In order to In order to create an error protocol, it was necessary to review the typical programming
mistakes, issues, and misunderstandings that novice programmers consistently commit when learning
data structures [33], [38], [55]–[58]. Based on the early studies of [59] and [20].The protocol was

ISSN 2614-0047 Bulletin of Social Informatics Theory and Application 135
Vol. 7, No. 2, December 2023, pp. 125-140

 Adam B. Mtaho (Effects of using problem-solving guide and explanatory support…)

divided into seventeen (17) sorts of mistakes (misconceptions), which were then grouped into four
categories of syntactic, semantic, schematic, and strategic errors.

3.7. Examinations settings and marking

The CS122 exams were created by instructors who taught the same course from 2017/2019. The
examination panels designed the tests and the grading criteria. The exam and marking scheme were
subsequently examined by external examiners to make sure they complied with both the curriculum
and examination criteria. The same group of examiners marked the test scripts. When the findings
were complete and available, the researchers randomly chose 43 examination scripts from the
2018/2019 scripts and compared them to 40 examination scripts from the 2017/2018 scripts. For the
sake of the study, only errors committed in linked-list and quick-sort questions were examined in both
the 2017/2018 and 2018/2019 exams. The questions tested the same level of programming cognition.
The students’ performance between the experimental and control groups was then considered for
analysis.

3.8. Procedure

The study was carried out using lectures, tutorials, and laboratory work. Each week comprised 8
hours of teaching divided into 4 hours of lectures, 2 hours of tutorials, and 2 hours of laboratory
sessions. The students were allowed to practice for 4 hours per week, that is, 2 hours of tutorials and
2 hours of supervised lab sessions. All students in participated the study. For each question provided
students were guided as directed by the problem solving guide. From defining the problem,
determining the algorithm, write the program, visualizing, debugging. Each program was written in
CeliotM editor. The students were writing codes and visualizing them step by step, observing both
animation and explanations per week. Students and visualized different programs and examine how
program execution take place, debug and trace the program. After learning these topics for 52 weeks,
students took the end-of-semester examination to verify if the use of the proposed approach had a
positive impact on their cognition. After the end-of-semester examinations, the data pertaining to final
examination performance was collected for analysis. The number of errors committed by the students
in the experimental group was compared with those committed by the control group. The comparison
of the errors was done by comparing the four most common errors that novices commit as defined by
[59] and [20].

3.9. Data Analysis

The study employed quantitative data analysis methods. An independent t-test was used to
determine if there exists a significant difference in the mean number of errors committed by students
between the two groups. Descriptive statistics (percentages) was used to compare the number of errors
committed between control and experimental group. The results of the study were presented using
tables and figures.

4. Results and Discussion

Table 1 shows that the experimental group made an average of 11.41 errors, whereas the control
group made an average of 36.65% errors, with standard deviations of 5.767 and 10.295, respectively.
The results from the independent samples’ test in Table 2 show that the significance value (p) is
0.0001. Since the p-value of 0.000 is less than 0.05, the alternative hypothesis is accepted, and hence
there is a significant difference, as observed in the mean CS122 performance, between the number of
errors committed between the control and the experimental groups. This implies that the number of
errors committed by the students in the academic year 2019–2020 for the CS 122 examination (when
the CeliotM framework was used) was less than those committed by students in 2017–2018 (when the
traditional approach was used).

Table.1 Descriptive Statistics for errors committed between control and experimental group

 Treatment N Mean Std. Deviation Std. Error Mean

SCORE
Control 17 36.65 10.295 2.497

Experimental 17 11.41 5.767 1.399

136 Bulletin of Social Informatics Theory and Application ISSN 2614-0047

 Vol. 7, No. 2, December 2023, pp. 125-140

 Adam B. Mtaho (Effects of using problem-solving guide and explanatory support…)

Table.2 Independent samples’ test results

 Levene's Test
for Equality of

Variances

t-test for Equality of Means

F Sig. t df Sig. (2-
tailed)

Mean
Difference

Std. Error
Difference

95% Confidence
Interval of the

Difference
Lower Upper

SCORE

Equal
variances
assumed

1.494 .231 8.817 32 .000 25.235 2.862 19.406 31.065

Equal
variances not

assumed

8.817 25.141 .000 25.235 2.862 19.343 31.128

These results confirm the hypothesis that students who used the CeliotM framework to learn data
structures improved their comprehension as compared to those who used the conventional lecture
method. As shown in Table 3, the total number of syntax, strategic, semantic, and schematic errors
made in the academic year 2017-2018 was 363 (in the control group), while those made in 2017/2019
(in the experimental group) were 207. Table 3 also shows the percentage of errors reduced after using
the CeliotM framework as follows: Semantic errors (75.0%), strategic errors (72.2%), schematic
errors (7.3%), and syntax errors (67.2%). This implies that the use of the CeliotM framework was
more helpful in reducing students' misconceptions when learning data structures as compared to the
traditional method.

Table.3 Comparison of number of errors committed between control and experimental group

 Control Group Experimental Group % of Error Reduced
Syntax errors 119 39 67.2%

Strategic errors 108 30 72.2%
Semantic errors 28 7 75.0%
Schematic errors 108 31 71.3%

 TOTAL 363 107 70.5%

Table 3 compares the total number of errors committed by the experimental group (2018/2019)
versus those committed by the students in the control group (2017/2018). As shown in Table 4, the
number of errors committed decreased after using CeliotM. The strategic error decreased by 72.2%,
while the semantic error decreased by 75.0%. This implies that the students who used CeliotM
experienced fewer misconceptions and hence deeply comprehended the data structures as compared
to those in the traditional approach (2017/2018). The types of misconceptions that were committed
with a frequency above 59% in linked were those related to failure to correctly update the head
pointer, failing to update the next pointer, not handling an empty list properly, forgetting to update
the list size, and mixing node references or data types. For the case of the merge sort, the following
misconceptions were committed with a frequency up to 55%: failure to formulate the correct base
case for recursion, not passing the correct array size, not updating indices properly, wrongly
calculating the middle element calculation, and mixing up the order of recursive calls. These results
concur with previous studies that learning data structure concepts is difficult, and thus the majority
of the students who learn data structures commit misconceptions in learning the course [33], [60].

The authors in [20] and contend that novice programmers usually commit four types of
programming errors as they try to learn to program: failure to interpret the problem or question that
they have been asked to solve (strategic errors); failure to identify which method or what constructs

ISSN 2614-0047 Bulletin of Social Informatics Theory and Application 137
Vol. 7, No. 2, December 2023, pp. 125-140

 Adam B. Mtaho (Effects of using problem-solving guide and explanatory support…)

to use to solve a given problem (schematic); failure to determine the contribution of that programming
construct to the solution (i.e., inability to know how the compiler interprets the code); and failure to
follow the programming language rules (syntax or compiler errors). Therefore, novices require
support at all four levels of programming, across program and problem formulation. Findings from
this study have shown that the use of the CeliotM framework has managed to improve all types of
errors. These results support previous studies that show that as you extend the capabilities of the
learning tool to engage them, learners’ cognitive resources become fully utilized, thus improving
programming comprehension [61]. In general, the inclusion of new learner engagement features in
CeliotM helped to enhance the comprehension of data structures and hence minimize learners’
misconceptions in learning the data structure course.

5. Conclusion

This study aimed at examining the impact of using CeliotM on reducing students’ misconceptions
about data structures. More specifically, the study examined the effect of using a CeliotM learning
environment on reducing syntax, semantic, schematic, and strategic errors. The tool's system- and
user-defined explanations, informative error messages, and problem-solving guides all make the
framework more engaging. The CeliotM integrated working environment makes it work as a compiler,
visualizer, and practice working platform. The impact of using the CeliotM has been evaluated
through experiments. Results from the experiment have shown that the use of this framework has
significantly reduced students’ misconceptions about learning data structures and hence improved
programming comprehension. The positive results revealed in this study promise that further
improvement, if done within this framework, can bring better results. Currently, the platform supports
only text narration. Future research should consider transforming systems and user-defined text
emanations into audio to enhance the understanding ability of animations. The tool also currently
supports the C++ language. Extending it to support Python and C programming languages could be
done to extend the applicability of the platform. The errors protocol used focused on the four main
categories of errors; future studies should consider extending the range of errors protocols to include
a wide range that is more specific when implementing data structures such as tree, graphs, and heaps.

References
[1] P. Perera, G. Tennakoon, S. Ahangama, R. Panditharathna, and B. Chathuranga, “A Systematic

Mapping of Introductory Programming Languages for Novice Learners,” IEEE Access, vol. 9, pp.

88121–88136, 2021, doi: 10.1109/ACCESS.2021.3089560.

[2] D. McCall and M. Kölling, “A New Look at Novice Programmer Errors,” ACM Trans. Comput. Educ.,

vol. 19, no. 4, pp. 1–30, Dec. 2019, doi: 10.1145/3335814.

[3] C. M. Kandemir, F. Kalelioğlu, and Y. Gülbahar, “Pedagogy of teaching introductory text‐based

programming in terms of computational thinking concepts and practices,” Comput. Appl. Eng. Educ.,

vol. 29, no. 1, pp. 29–45, Jan. 2021, doi: 10.1002/cae.22374.

[4] K. Kwon, “Novice programmer ’ s misconception of programming reflected on problem-solving plans,”

vol. 1, no. 4, 2017, doi: 10.21585/ijcses.v1i4.19.

[5] N. Shrestha, C. Botta, T. Barik, and C. Parnin, “Here we go again,” in Proceedings of the ACM/IEEE

42nd International Conference on Software Engineering, Jun. 2020, pp. 691–701, doi:

10.1145/3377811.3380352.

[6] R. Benatti, T. Aparecida, R. Azevedo, G. Gama, and T. Caldas, “An Antipattern Documentation about

Misconceptions related to an Introductory Programming Course in C,” pp. 1-44, 2017. [Online].

Available at: https://ic.unicamp.br/~reltech/2017/17-15.pdf.

[7] A. L. C. Barczak, A. Mathrani, B. Han, and N. H. Reyes, “Automated assessment system for

programming courses: a case study for teaching data structures and algorithms,” Educ. Technol. Res.

Dev., pp. 1–24, Aug. 2023, doi: 10.1007/s11423-023-10277-2.

[8] M. Heinsen Egan and C. McDonald, “An evaluation of SeeC: a tool designed to assist novice C

programmers with program understanding and debugging,” Comput. Sci. Educ., vol. 31, no. 3, pp. 340–

373, Jul. 2021, doi: 10.1080/08993408.2020.1777034.

https://doi.org/10.1109/ACCESS.2021.3089560
https://doi.org/10.1145/3335814
https://doi.org/10.1002/cae.22374
https://doi.org/10.21585/ijcses.v1i4.19
https://doi.org/10.1145/3377811.3380352
https://ic.unicamp.br/~reltech/2017/17-15.pdf
https://doi.org/10.1007/s11423-023-10277-2
https://doi.org/10.1080/08993408.2020.1777034

138 Bulletin of Social Informatics Theory and Application ISSN 2614-0047

 Vol. 7, No. 2, December 2023, pp. 125-140

 Adam B. Mtaho (Effects of using problem-solving guide and explanatory support…)

[9] N. Burow et al., “Control-Flow Integrity,” ACM Comput. Surv., vol. 50, no. 1, pp. 1–33, Jan. 2018, doi:

10.1145/3054924.

[10] M. Adam Basigie, “The Impact Of Combining Follow-Up Questions And Worked Examples In

Program Visualization Tool On Improving Students’ Held Mental Models Of Pointers’ Value And

Address Assignment,” Educ. Pedagog. J., no. 2(4), pp. 53–64, Dec. 2022, doi: 10.23951/2782-2575-

2022-2-53-64.

[11] S. Su, E. Zhang, P. Denny, and N. Giacaman, “A Game-Based Approach for Teaching Algorithms and

Data Structures using Visualizations,” in Proceedings of the 52nd ACM Technical Symposium on

Computer Science Education, Mar. 2021, pp. 1128–1134, doi: 10.1145/3408877.3432520.

[12] C. O’Farrelly, A. Booth, M. Tatlow-Golden, and B. Barker, “Reconstructing readiness: Young

children’s priorities for their early school adjustment,” Early Child. Res. Q., vol. 50, pp. 3–16, 2020,

doi: 10.1016/j.ecresq.2018.12.001.

[13] C. Izu et al., “Fostering Program Comprehension in Novice Programmers - Learning Activities and

Learning Trajectories,” in Proceedings of the Working Group Reports on Innovation and Technology

in Computer Science Education, Dec. 2019, pp. 27–52, doi: 10.1145/3344429.3372501.

[14] T. Scholtz and I. Sanders, “Mental Models of Recursion : Investigating Students ’ Understanding of

Recursion,” pp. 103–107, 2010, doi: 10.1145/1822090.1822120.

[15] R. Mccauley, S. Grissom, S. Fitzgerald, and L. Murphy, “Teaching and learning recursive

programming : a review of the research literature,” Comput. Sci. Educ., vol. 3408, no. May, pp. 1–30,

2015, doi: 10.1080/08993408.2015.1033205.

[16] E. Almadhoun and J. Parham-Mocello, “Identifying Student Misunderstandings About Singly Linked

Lists in the C Programming Language,” in 2021 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC), Oct. 2021, vol. 2010-Octob, pp. 1–9, doi:

10.1109/VL/HCC51201.2021.9576162.

[17] J. Sorva, “Notional Machines and Introductory Programming Education,” vol. 13, no. 2, 2013, doi:

10.1145/2483710.2483713.

[18] T. Kohn and D. Komm, “Teaching Programming and Algorithmic Complexity with Tangible

Machines,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 11169 LNCS, Springer Verlag, 2018, pp. 68–

83, doi: 10.1007/978-3-030-02750-6_6.

[19] E. Vrachnos and A. Jimoyiannis, “Secondary education students’ difficulties in algorithmic problems

with arrays: An analysis using the SOLO taxonomy,” Themes Sci. Technol. Educ., vol. 10, no. 1, pp.

31–52, Dec. 2017. [Online]. Available at: http://earthlab.uoi.gr/.

[20] N. J. Coull, “SNOOPIE : Development of a Learning Support Tool for Novice Programmers within a

Conceptual Framework,” University of St Andrews, p. 237, 2008. [Online]. Available at:

https://research-repository.st-andrews.ac.uk/handle/10023/522?show=full.

[21] K. Shinohara, N. Jacobo, W. Pratt, and J. O. Wobbrock, “Design for Social Accessibility Method

Cards,” ACM Trans. Access. Comput., vol. 12, no. 4, pp. 1–33, Dec. 2019, doi: 10.1145/3369903.

[22] K. Romanowska, G. Singh, M. A. A. Dewan, and F. Lin, “Towards Developing an Effective Algorithm

Visualization Tool for Online Learning,” in 2018 IEEE SmartWorld, Ubiquitous Intelligence &

Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big

Data Computing, Internet of People and Smart City Innovation

(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Oct. 2018, no. March 2020, pp. 2011–2016,

doi: 10.1109/SmartWorld.2018.00336.

[23] A. Spanier, S. W. Harms, and J. Hastings, “A Classification Scheme for Gamification in Computer

Science Education: Discovery of Foundational Gamification Genres in Data Structures Courses,” in

2021 IEEE Frontiers in Education Conference (FIE), Oct. 2021, vol. 2021-Octob, pp. 1–9, doi:

10.1109/FIE49875.2021.9637447.

https://doi.org/10.1145/3054924
https://doi.org/10.23951/2782-2575-2022-2-53-64
https://doi.org/10.23951/2782-2575-2022-2-53-64
https://doi.org/10.1145/3408877.3432520
https://doi.org/10.1016/j.ecresq.2018.12.001
https://doi.org/10.1145/3344429.3372501
https://doi.org/10.1145/1822090.1822120
https://doi.org/10.1080/08993408.2015.1033205
https://doi.org/10.1109/VL/HCC51201.2021.9576162
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1007/978-3-030-02750-6_6
http://earthlab.uoi.gr/ojs/theste/index.php/theste/article/view/238
https://research-repository.st-andrews.ac.uk/handle/10023/522?show=full
https://doi.org/10.1145/3369903
https://doi.org/10.1109/SmartWorld.2018.00336
https://doi.org/10.1109/FIE49875.2021.9637447

ISSN 2614-0047 Bulletin of Social Informatics Theory and Application 139
Vol. 7, No. 2, December 2023, pp. 125-140

 Adam B. Mtaho (Effects of using problem-solving guide and explanatory support…)

[24] T. J. Burns, S. C. Rios, T. K. Jordan, Q. Gu, and T. Underwood, “Analysis and Exercises for Engaging

Beginners in Online {CTF} Competitions for Security Education.” p. 9, 2017. [Online]. Available at:

https://www.usenix.org/conference/ase17/workshop-program/presentation/burns.

[25] W. W. Yang, Shi, Krupal, Shah, “Toward Semi-Automatic Misconception Discovery Using Code, ”

Association for Computing Machinery vol. 1, no. 1, p. 7 2021, doi: 10.1145/3448139.3448205.

[26] L. Gusukuma et al., “Misconception-Driven Feedback : Results from an Experimental Study,” no. 1,

pp. 160–168, 2018, doi: 10.1145/3230977.3231002.

[27] T. J. McGill and S. E. Volet, “A conceptual framework for analyzing students’ knowledge of

programming,” J. Res. Comput. Educ., vol. 29, no. 3, pp. 276–297, 1997, doi:

10.1080/08886504.1997.10782199.

[28] Y. Qian and J. Lehman, “Students’ Misconceptions and Other Difficulties in Introductory

Programming,” ACM Trans. Comput. Educ., vol. 18, no. 1, pp. 1–24, Mar. 2018, doi: 10.1145/3077618.

[29] E. Fouh, M. Akbar, C. A. Shaffer, and V. Tech, “The Role of Visualization in Computer Science

Education,” pp. 95–117, 2012, doi : 10.1080/07380569.2012.651422.

[30] A. A. Supli, “Critical Analysis on Algorithm Visualization Study Critical Analysis on Algorithm

Visualization Study,” no. October, pp. 18–22, 2016, doi: 10.5120/ijca2016911633.

[31] S. Hamouda, S. H. Edwards, H. G. Elmongui, J. V Ernst, and C. A. Shaffer, “A basic recursion concept

inventory,” Comput. Sci. Educ., vol. 27, no. 2, pp. 121–148, 2017, doi :

10.1080/08993408.2017.1414728.

[32] L. Porter, D. Zingaro, C. Lee, C. Taylor, K. C. Webb, and M. Clancy, “Developing Course-Level

Learning Goals for Basic Data Structures in CS2,” pp. 858–863, 2018, doi : 10.1145/3159450.3159457.

[33] D. Zingaro, C. Taylor, L. Porter, M. Clancy, C. Lee, and K. C. Webb, “Identifying Student Difficulties

with Basic Data Structures,” no. 169, pp. 169–177, 2018, doi : 10.1145/3230977.3231005.

[34] E. Fouh et al., “Investigating Difficult Topics in a Data Structures Course Using Item Response Theory

and Logged Data Analysis ∗,” pp. 370–375. [Online]. Available at : https://eric.ed.gov/?id=ED592711.

[35] J. Sorva, V. Karavirta, and L. Malmi, “A Review of Generic Program Visualization Systems for

Introductory,” vol. 13, no. 4, 2013, doi : 10.1145/2490822.

[36] J. C. Spohrer, E. Soloway, and E. Pope, “Where The Bugs Are,” no. April, pp. 47–53, 1985, doi :

10.1145/1165385.317465.

[37] J. C. Spohrer and E. Soloway, “Simulating Student Programmers.,” in IJCAI, 1989, vol. 89, pp. 543–

549. [Online]. Available at : https://www.ijcai.org/Proceedings/89-1/Papers/087.pdf.

[38] G. Yarmish and D. Kopec, “Revisiting Novice Programmer Errors,” vol. 39, no. 2, pp. 131–137, 2007,

doi : 10.1145/1272848.1272896.

[39] H. Danielsiek, W. Paul, and J. Vahrenhold, “Detecting and understanding students’ misconceptions

related to algorithms and data structures,” in Proceedings of the 43rd ACM technical symposium on

Computer Science Education, 2012, pp. 21–26, doi : 10.1145/2157136.2157148.

[40] A. Decker and D. Simkins, “Uncovering Difficulties in Learning for the Intermediate Programmer,”

2016 IEEE Frontiers in Education Conference (FIE), pp. 1-8, 2016, doi : 10.1109/FIE.2016.7757446.

[41] A. Moreno, E. Sutinen, and C. Islas Sedano, “A game concept using conflictive animations for learning

programming,” in 2013 IEEE International Games Innovation Conference (IGIC), Sep. 2013, pp. 175–

178, doi: 10.1109/IGIC.2013.6659161.

[42] M. H. Egan and C. Mcdonald, “Program visualization and explanation for novice C programmers,” in

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), 2014, pp. 51–

57. [Online]. Available at : https://dl.acm.org/doi/pdf/10.5555/2667490.2667496.

[43] M. J. Laakso, T. Rajala, E. Kaila, and T. Salakoski, “The impact of prior experience in using a

visualization tool on learning to program,” IADIS Int. Conf. Cogn. Explor. Learn. Digit. Age, CELDA

2008, no. January, pp. 129–136, 2008, [Online]. Available at:

https://www.researchgate.net/profile/Teemu-Rajala/publication/31597980_.

https://www.usenix.org/conference/ase17/workshop-program/presentation/burns
https://doi.org/10.1145/3448139.3448205
https://doi.org/10.1145/3230977.3231002
https://doi.org/10.1080/08886504.1997.10782199
https://doi.org/10.1145/3077618
https://doi.org/10.1080/07380569.2012.651422
https://doi.org/10.5120/ijca2016911633
https://doi.org/10.1080/08993408.2017.1414728
https://doi.org/10.1145/3159450.3159457
https://doi.org/10.1145/3230977.3231005
https://eric.ed.gov/?id=ED592711
https://doi.org/10.1145/2490822
https://doi.org/10.1145/1165385.317465
https://www.ijcai.org/Proceedings/89-1/Papers/087.pdf
https://doi.org/10.1145/1272848.1272896
https://doi.org/10.1145/2157136.2157148
https://doi.org/10.1109/FIE.2016.7757446
https://doi.org/10.1109/IGIC.2013.6659161
https://dl.acm.org/doi/pdf/10.5555/2667490.2667496
https://www.researchgate.net/profile/Teemu-Rajala/publication/31597980_The_Impact_of_Prior_Experience_in_Using_a_Visualization_Tool_on_Learning_to_Program/links/00b4953916864e236c000000/The-Impact-of-Prior-Experience-in-Using-a-Visualization-Tool-on-Learn

140 Bulletin of Social Informatics Theory and Application ISSN 2614-0047

 Vol. 7, No. 2, December 2023, pp. 125-140

 Adam B. Mtaho (Effects of using problem-solving guide and explanatory support…)

[44] T. L. Naps et al., “Exploring the role of visualization and engagement in computer science education,”

ACM SIGCSE Bull., vol. 35, no. 2, pp. 131–152, Jun. 2003, doi: 10.1145/782941.782998.

[45] J. Sorva, V. Karavirta, and L. Malmi, “A review of generic program visualization systems for

introductory programming education,” ACM Trans. Comput. Educ., vol. 13, no. 4, 2013, doi:

10.1145/2490822.

[46] L. J. Mselle and H. Twaakyondo, “The impact of Memory Transfer Language (MTL) on reducing

misconceptions in teaching programming to novices,” Int. J. Mach. Learn. Appl., 2012, doi:

10.4102/ijmla.v1i1.3.

[47] P. Bellstrom and C. Thoren, “Learning how to program through visualization: A pilot study on the

bubble sort algorithm,” in 2009 Second International Conference on the Applications of Digital

Information and Web Technologies, 2009, pp. 90–94, doi : 10.1109/ICADIWT.2009.5273943.

[48] L. Mselle and F. Ishengoma, “Memory transfer language as a tool for visualization-based-pedagogy,”

Educ. Inf. Technol., vol. 27, no. 9, pp. 13089–13112, Nov. 2022, doi: 10.1007/s10639-022-11165-7.

[49] T. Naps et al., “Evaluating the Educational Impact of Visualization,” pp. 124-136, 2003, doi :

10.1145/960875.960540.

[50] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko, “A meta-study of algorithm visualization

effectiveness,” J. Vis. Lang. Comput., vol. 13, no. 3, pp. 259–290, 2002, doi: 10.1006/jvlc.2002.0237.

[51] J. Urquiza-fuentes, V. E. L. Azquez-iturbide, U. Rey, and J. Carlos, “A Survey of Successful

Evaluations of Program Visualization and Algorithm Animation Systems ∗,” vol. 9, no. June, 2009, doi

: 10.1145/1538234.1538236.

[52] E. De Corte, L. Verschaffel, and H. Schrooten, “Cognitive effects of learning to program in Logo: A

one-year study with sixth graders,” in Computer-based learning environments and problem solving,

1992, pp. 207–228, doi : 10.1007/978-3-642-77228-3_10.

[53] P. Denny et al., “On Designing Programming Error Messages for Novices : Readability and its

Constituent Factors,” 1983, doi: 10.1145/3411764.3445696.

[54] B. A. Becker et al., Compiler Error Messages Considered Unhelpful : The Landscape of Text-Based

Programming Error Message Research. pp. 177 - 208, 2019, doi : 10.1145/3344429.3372508.

[55] A. J. Ko and B. A. Myers, “A framework and methodology for studying the causes of software errors

in programming systems,” J. Vis. Lang. Comput., vol. 16, no. 1-2 SPEC. ISS., pp. 41–84, 2005, doi:

10.1016/j.jvlc.2004.08.003.

[56] B. Du Boulay, “Some difficulties of learning to program,” J. Educ. Comput. Res., vol. 2, no. 1, pp. 57–

73, 1986, doi : 10.2190/3LFX-9RRF-67T8-UVK9.

[57] D. Fossati, B. Di Eugenio, C. W. Brown, S. Ohlsson, D. G. Cosejo, and L. Chen, “Supporting Computer

Science Curriculum : Exploring and Learning Linked Lists with iList,” vol. 2, no. 2, pp. 107–120, 2009,

doi : 10.1109/TLT.2009.21.

[58] M. Hristova, A. Misra, M. Rutter, and R. Mercuri, “Identifying and correcting Java programming errors

for introductory computer science students,” ACM SIGCSE Bull., vol. 35, no. 1, pp. 153–156, 2003, doi

: 10.1145/792548.611956.

[59] G. Lund, “Quality aspects of the program development process used by learner programmers.”

University of Abertay Dundee, p. 242, 2002. [Online]. Available at:

https://rke.abertay.ac.uk/en/studentTheses/quality-aspects-of-the-program-development-process-used-

by-learne.

[60] E. Almadhoun and J. Parham-Mocello, “Exploratory Study on Accuracy of Students’ Mental Models

of a Singly Linked List,” in 2021 IEEE Frontiers in Education Conference (FIE), 2021, pp. 1–9, doi :

10.1109/FIE49875.2021.9637318.

[61] J. Sweller, “Element Interactivity and Intrinsic , Extraneous , and Germane Cognitive Load,” pp. 123–

138, 2010, doi: 10.1007/s10648-010-9128-5.

https://doi.org/10.1145/782941.782998
https://doi.org/10.1145/2490822
https://doi.org/10.4102/ijmla.v1i1.3
https://doi.org/10.1109/ICADIWT.2009.5273943
https://doi.org/10.1007/s10639-022-11165-7
https://doi.org/10.1145/960875.960540
https://doi.org/10.1006/jvlc.2002.0237
https://doi.org/10.1145/1538234.1538236
https://doi.org/10.1007/978-3-642-77228-3_10
https://doi.org/10.1145/3411764.3445696
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1016/j.jvlc.2004.08.003
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://doi.org/10.1109/TLT.2009.21
https://doi.org/10.1145/792548.611956
https://rke.abertay.ac.uk/en/studentTheses/quality-aspects-of-the-program-development-process-used-by-learne
https://rke.abertay.ac.uk/en/studentTheses/quality-aspects-of-the-program-development-process-used-by-learne
https://doi.org/10.1109/FIE49875.2021.9637318
https://doi.org/10.1007/s10648-010-9128-5

