Implementation of facial recognition technology in the verification system for api banyuwangi cadets using the haar cascade algorithm

Authors

  • Ariyono Setiawan Akademi Penerbang Indonesia Banyuwangi
  • Kukuh Tri Prasetyo Akademi Penerbang Indonesia Banyuwangi
  • Arief Rusdyansyah Akademi Penerbang Indonesia Banyuwangi
  • Dede Ardian Akademi Penerbang Indonesia Banyuwangi

DOI:

https://doi.org/10.31763/businta.v8i2.778

Keywords:

Identity verification, facial recognition technology, haar cascade algorithm

Abstract

This research aims to enhance the efficiency and security of the identity verification process for cadets at API Banyuwangi through the implementation of facial recognition technology using the Haar Cascade algorithm. In this study, experimental methods and statistical analysis were used to analyze the data obtained from a series of processing stages, including RGB to grayscale conversion, image resizing, and cropping. Data were collected through facial image acquisition using a webcam and processed to train the model and test the success of the verification system. Statistical analysis shows that preprocessing techniques have a significant impact on verification success, while facial recognition methods are also relevant. However, the data are not normally distributed, indicating the need for alternative analytical approaches. Thus, this research provides valuable insights into the potential of facial recognition technology in enhancing efficiency and security in identity management at educational institutions, while also highlighting the need for further research for the development of methods and deeper understanding.

References

M. Kulkarni, S. Tirupathi, P. Tirupathi, A. Abhang, and R. Deshmukh, “Smart Lab Management using Cloud and ML,” in 2023 6th International Conference on Advances in Science and Technology (ICAST), Dec. 2023, pp. 291–295, doi: 10.1109/ICAST59062.2023.10454949.

S. Chinamanagonda, “Automating Cloud Governance - Organizations automating compliance and governance in the cloud,” MZ Comput. J., vol. 2, no. 1, pp. 1–16, May 2021. [Online]. Available at: http://mzjournal.com/index.php/MZCJ/article/view/341.

M. A. Musarat, A. M. Khan, W. S. Alaloul, N. Blas, and S. Ayub, “Automated monitoring innovations for efficient and safe construction practices,” Results Eng., vol. 22, p. 102057, Jun. 2024, doi: 10.1016/j.rineng.2024.102057.

L. Qinjun, C. Tianwei, Z. Yan, and W. Yuying, “Facial Recognition Technology: A Comprehensive Overview,” Acad. J. Comput. Inf. Sci., vol. 6, no. 7, pp. 15–26, 2023, doi: 10.25236/AJCIS.2023.060703.

S. Zhou and S. Xiao, “Face Recognition System: a survey,” Human-centric Comput. Inf. Sci., vol. 8, no. 1, pp. 1-27, 2018, doi: 10.1186/s13673-018-0157-2.

S. Gaur, M. Pandey, and Himanshu, “Realization of Facial Recognition Technology for Attendance Monitoring Through Biometric Modalities Employing MTCNN Integration,” SN Comput. Sci., vol. 5, no. 7, p. 862, Sep. 2024, doi: 10.1007/s42979-024-03225-1.

M. Abdul-Al, G. Kumi Kyeremeh, R. Qahwaji, N. T. Ali, and R. A. Abd-Alhameed, “The Evolution of Biometric Authentication: A Deep Dive Into Multi-Modal Facial Recognition: A Review Case Study,” IEEE Access, vol. 12, pp. 179010–179038, 2024, doi: 10.1109/ACCESS.2024.3486552.

M. Abdul-Al, G. K. Kyeremeh, R. Qahwaji, N. T. Ali, and R. A. Abd-Alhameed, “A Novel Approach to Enhancing Multi-Modal Facial Recognition: Integrating Convolutional Neural Networks, Principal Component Analysis, and Sequential Neural Networks,” IEEE Access, vol. 12, pp. 140823–140846, 2024, doi: 10.1109/ACCESS.2024.3467151.

M. Aly, “Revolutionizing online education: Advanced facial expression recognition for real-time student progress tracking via deep learning model,” Multimed. Tools Appl., pp. 1–40, Jun. 2024, doi: 10.1007/s11042-024-19392-5.

V. K. Patil, P. Nawade, R. Nagarkar, and P. Kadale, “Object Detection and Tracking Face Detection and Recognition,” in Integrating Metaheuristics in Computer Vision for Real‐World Optimization Problems, Wiley, 2024, pp. 25–54, doi: 10.1002/9781394230952.ch2.

X. Wang, Y. C. Wu, M. Zhou, and H. Fu, “Beyond surveillance: privacy, ethics, and regulations in face recognition technology,” Front. Big Data, vol. 7, p. 1337465, Jul. 2024, doi: 10.3389/fdata.2024.1337465.

M. Wang and W. Deng, “Deep face recognition: A survey,” Neurocomputing, vol. 429, pp. 215–244, 2021, doi: 10.1016/j.neucom.2020.10.081.

F. Firouzi et al., “Harnessing the Power of Smart and Connected Health to Tackle COVID-19: IoT, AI, Robotics, and Blockchain for a Better World,” IEEE Internet Things J., vol. 8, no. 16, pp. 12826–12846, Aug. 2021, doi: 10.1109/JIOT.2021.3073904.

H. Omotunde and M. Ahmed, “A Comprehensive Review of Security Measures in Database Systems: Assessing Authentication, Access Control, and Beyond,” Mesopotamian J. CyberSecurity, vol. 2023, pp. 115–133, 2023, doi: 10.58496/MJCS/2023/016.

W. Santoso, R. Safitri, and S. Samidi, “Integration of Artificial Intelligence in Facial Recognition Systems for Software Security,” sinkron, vol. 8, no. 2, pp. 1208–1214, Apr. 2024, doi: 10.33395/sinkron.v8i2.13612.

S. H. Al Zaabi and R. Zamri, “Managing Security Threats through Touchless Security Technologies: An Overview of the Integration of Facial Recognition Technology in the UAE Oil and Gas Industry,” Sustainability, vol. 14, no. 22, p. 14915, Nov. 2022, doi: 10.3390/su142214915.

M. I. A. Rohim et al., “Improving Face Recognition Performance on Low-Resolution Images Using Super-Resolution Method,” J. Teknol. Inf. dan Ilmu Komput., vol. 11, no. 1, pp. 199–208, 2024, doi: 10.25126/jtiik.20241117947.

R. G. Guntara, “Facial Image Recognition Application on KTP Using Google Cloud Vision API and Kairos API Based on Android,” Ilk. J. Comput. Sci. Appl. Informatics, vol. 4, no. 2, pp. 198–207, 2022, doi: 10.28926/ilkomnika.v4i2.504.

M. A. H. Akhand, S. Roy, N. Siddique, M. A. S. Kamal, and T. Shimamura, “Facial Emotion Recognition Using Transfer Learning in the Deep CNN,” Electronics, vol. 10, no. 9, p. 1036, Apr. 2021, doi: 10.3390/electronics10091036.

L. A. W. Enforcement, U. S. E. Of, and F. R. Technology, “Face Off Law Enforcement Use Of Face Recognition Technology,” no. May, pp. 1–39, 2019, [Online]. Available at: https://www.eff.org/files/2019/05/28/face-off-report.pdf.

M. Andrejevic and N. Selwyn, “Facial recognition technology in schools: critical questions and concerns,” Learn. Media Technol., vol. 45, no. 2, pp. 115–128, 2020, doi: 10.1080/17439884.2020.1686014.

S. Wattamwar, R. Mate, P. Rainchwar, S. Mantri, and G. Sorate, “Optimal Face Recognition System using Haar Classifier,” in 2021 International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON), Oct. 2021, pp. 1–7, doi: 10.1109/SMARTGENCON51891.2021.9645879.

M. Yousefi and E. Rajabi, “Digital Identity Verification Methods in Financial Services: Enhancing Security and Compliance,” Business, Mark. Financ. Open, vol. 1, no. 2, pp. 25–40, Mar. 2024,. [Online]. Available at: https://www.bmfopen.com/index.php/bmfopen/article/view/9.

I. D. Raji, T. Gebru, M. Mitchell, J. Buolamwini, J. Lee, and E. Denton, “Saving Face: Investigating the ethical concerns of facial recognition auditing,” AIES 2020 - Proc. AAAI/ACM Conf. AI, Ethics, Soc., pp. 145–151, 2020, doi: 10.1145/3375627.3375820.

S. Rahman, E. F. Aliff S, and A. M. Elhanafi, “Face Recognition Application Using Backpropagation Algorithm and Voila Jones,” J. Teknol. dan Ilmu Komput. Prima, vol. 1, no. 1, pp. 91–101, 2018, doi: 10.34012/jutikomp.v1i1.336.

A. S. Nikolaev, T. G. Maximova, I. E. Sakhno, A. A. Antipov, and S. V. Murashova, “Facial Recognition Technologies Patent Landscape,” in Lecture Notes in Networks and Systems, vol. 596 LNNS, Springer, Cham, 2023, pp. 568–583, doi: 10.1007/978-3-031-21435-6_49.

X. Cheng, L. Qiao, B. Yang, and X. Zhang, “Investigation on users’ resistance intention to facial recognition payment: a perspective of privacy,” Electron. Commer. Res., vol. 24, no. 1, pp. 275–301, Mar. 2024, doi: 10.1007/s10660-022-09588-y.

S. P. Putra, I. Fitri, and S. Ningsih, “Facial Recognition Attendance Using Web-Based Eigenface Algorithm,” J. Appl. Informatics Comput., vol. 5, no. 1, pp. 21–27, 2021, doi: 10.30871/jaic.v5i1.2711.

D. Satria, “Analysis and Implementation of Association Rule with Apriori Algorithm in Accepting Lecturers Case Study at (Stkip) Ypm Bangko,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 2, no. 2, pp. 74–85, 2020, doi: 10.47233/jteksis.v2i2.117.

M. Sari, H. Rachman, N. Juli Astuti, M. Win Afgani, and R. Abdullah Siroj, “Explanatory Survey dalam Metode Penelitian Deskriptif Kuantitatif,” J. Pendidik. Sains dan Komput., vol. 3, no. 01, pp. 10–16, 2022, doi: 10.47709/jpsk.v3i01.1953.

M. D. Choudhry, S. Munusamy, J. Sivaraj, and A. Jothi, “Fundamentals of Statistics,” in Quantum Machine Learning, Boca Raton: Chapman and Hall/CRC, 2024, pp. 3–30, doi: 10.1201/9781003429654-2.

J. B. Grace and K. M. Irvine, “Scientist’s guide to developing explanatory statistical models using causal analysis principles,” Ecology, vol. 101, no. 4, p. e02962, Apr. 2020, doi: 10.1002/ecy.2962.

V. Mutneja and S. Singh, “Haar-features training parameters analysis in boosting based machine learning for improved face detection,” Int. J. Adv. Technol. Eng. Explor., vol. 8, no. 80, pp. 919–931, Jul. 2021, doi: 10.19101/IJATEE.2021.874076.

S. O. Adeshina, H. Ibrahim, S. S. Teoh, and S. C. Hoo, “Custom Face Classification Model for Classroom Using Haar-Like and LBP Features with Their Performance Comparisons,” Electronics, vol. 10, no. 2, p. 102, Jan. 2021, doi: 10.3390/electronics10020102.

T. Q. Vinh and N. T. N. Anh, “Real-Time Face Mask Detector Using YOLOv3 Algorithm and Haar Cascade Classifier,” Proc. - 2020 Int. Conf. Adv. Comput. Appl. ACOMP 2020, pp. 146–149, 2020, doi: 10.1109/ACOMP50827.2020.00029.

M. Sitorus and Nurul Fadillah, “Multi Face Detection System Using Haar Cascade Classifier Method,” J-ICOM - J. Inform. dan Teknol. Komput., vol. 1, no. 1, pp. 1–5, 2020, doi: 10.33059/j-icom.v1i1.2728.

A. Sehanobish, N. Ravindra, and D. van Dijk, “Gaining Insight into SARS-CoV-2 Infection and COVID-19 Severity Using Self-supervised Edge Features and Graph Neural Networks,” 35th AAAI Conf. Artif. Intell. AAAI 2021, vol. 6A, pp. 4864–4873, 2021, doi: 10.1609/aaai.v35i6.16619.

M. P. Véstias, “A survey of convolutional neural networks on edge with reconfigurable computing,” Algorithms, vol. 12, no. 8, pp. 1-24, 2019, doi: 10.3390/a12080154.

A. Singh, H. Herunde, and F. Furtado, “Modified Haar-Cascade Model for Face Detection Issues,” Int. J. Res. Ind. Eng. , vol. 9, no. 2, pp. 143–171, 2020. [Online]. Available at: https://www.riejournal.com/article_107190.html.

H. Jeong, G. R. Kwon, and S. W. Lee, “Deterioration Diagnosis of Solar Module Using Thermal and Visible Image Processing,” Energies, vol. 13, pp. 1–14, 2020, doi: 10.3390/en13112856.

Prof. Dr. Paul Mccullagh, “Face detection by using Haar Cascade Classifier,” Wasit J. Comput. Math. Sci., vol. 2, no. 1, pp. 1–5, Mar. 2023, doi: 10.31185/wjcm.109.

D. Junaidy, M. Wulandari, and H. Tanudjaja, “Real time face detection using haar-like feature method and local binary pattern method,” IOP Conf. Ser. Mater. Sci. Eng., vol. 508, no. 1, pp. 1-6, 2019, doi: 10.1088/1757-899X/508/1/012076.

J. L Gaol, M. Rivai, and T. Tasripan, “Biometric Authentication System based on Electroencephalography Signal Spectrum Features,” J. Tek. ITS, vol. 7, no. 2, pp. 337, 342, 2019. [Online]. Available at: https://www.neliti.com/publications/497226/sistem-autentikasi-biometrik-berbasis-fitur-spektrum-sinyal-elektroensefalografi.

R. Solekha, M. Alif Ramadhan, F. Nurdiyanto, and U. Latifa, “Fector : Face Emotion Detector Sebagai Penunjang Efektivitas Dalam Pembelajaran Daring (Dalam Jaringan),” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 2047–2055, 2024, doi: 10.36040/jati.v8i2.7962.

M. Ebrahimi Kalan, R. Jebai, E. Zarafshan, and Z. Bursac, “Distinction Between Two Statistical Terms: Multivariable and Multivariate Logistic Regression,” Nicotine Tob. Res., vol. 23, no. 8, pp. 1446–1447, Aug. 2021, doi: 10.1093/ntr/ntaa055.

A. Das, “Logistic Regression,” in Encyclopedia of Quality of Life and Well-Being Research, Cham: Springer International Publishing, 2023, pp. 3985–3986, doi: 10.1007/978-3-031-17299-1_1689

Downloads

Published

2024-12-09

How to Cite

Setiawan, A., Prasetyo, K. T., Rusdyansyah, A., & Ardian, D. (2024). Implementation of facial recognition technology in the verification system for api banyuwangi cadets using the haar cascade algorithm. Bulletin of Social Informatics Theory and Application, 8(2), 309–330. https://doi.org/10.31763/businta.v8i2.778

Issue

Section

Articles