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Abstract: Facial wrinkle distribution is an important indicator of aging and lifestyle. This 
study proposes a personalized wrinkle classification system using a Backpropagation 
Neural Network (BPNN) based on segmented facial areas such as the forehead, eyes, 
cheeks, and mouth. After preprocessing and feature extraction, the BPNN model is 
trained to classify wrinkle severity into two categories: high and medium. Evaluation 
results show that the model performs well, particularly in detecting the Medium class, 
achieving a precision of 0.8438 and a recall of 0.9310, while for the High class, the 
precision is 0.8333 and the recall is 0.6667. These findings indicate that the BPNN 
architecture is effective and reliable in facial wrinkle classification, with potential 
applications in dermatology, cosmetic analysis, and digital forensics. 
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1. Introduction 
Skin aging is a biological process influenced by intrinsic and extrinsic factors, where 

wrinkles act as visible indicators of aging [1]. Accurate wrinkle analysis plays an 
important role in medical diagnostics, cosmetic product development, and forensic 
investigations [2]. However, traditional wrinkle detection methods are often limited in 
handling nonlinear patterns and subtle micro-texture variations [3]. 

 
Recent advances in deep learning techniques have significantly improved the 

performance of wrinkle detection. Moon et al. introduced FFHQ-Wrinkle, a large 
annotated dataset with texture map-based weak supervision, which achieved notable 
segmentation accuracy [4]. Kim et al. developed a U-Net model with weighted deep 
supervision and semi-automatic labeling to enhance wrinkle boundary precision [5]. 
Similarly, Zhang et al. proposed a novel CNN-based approach with a distance-based loss 
function to improve fine wrinkle detection [6]. These studies have shown strong results 
but often require large datasets and high computational resources, limiting their 
feasibility for lightweight or real-time applications [7]. 

 
In this study, we propose a Backpropagation Neural Network (BPNN) with region-

based facial segmentation for wrinkle detection. The proposed method combines texture 
and contour features extracted from key facial regions and applies a computationally 
efficient neural network architecture [8]. This approach aims to achieve competitive 
accuracy while maintaining low computational cost, making it suitable for small datasets 
and practical deployments [9]. 

 
2. Theory 

Aging is a complex biological process that affects all human organs, including the 
skin. The skin, especially the facial area, is the most visible part of aging due to the 
appearance of wrinkles, loss of elasticity, and structural degradation. These visible signs 
are influenced by a combination of genetic, environmental, and lifestyle factors. To 
understand and analyze the distribution of facial wrinkles accurately, it is essential to 
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explore the theoretical foundations behind skin aging, digital image processing, and 
neural network modeling. This section outlines the relevant theories that underpin the 
methodology used in this study. 

 
2.1 Skin Aging and Wrinkle Formation 

Aging is a complex biological process that affects all human organs, especially the 
skin. Wrinkle formation results from the breakdown of collagen and elastin fibers due to 
intrinsic factors such as genetics and hormonal changes, as well as extrinsic factors 
including UV radiation, environmental pollution, smoking, and inadequate skincare [10]. 
These factors increase free radical production and activate matrix metalloproteinase 
enzymes, accelerating dermal degradation and leading to reduced elasticity, dryness, and 
deeper wrinkles [11]. 

 
2.2 Digital Image and Image Processing 

Digital image processing enables wrinkle detection by enhancing and analyzing 
visual features from facial images [12]. Common preprocessing steps include grayscale 
conversion, resizing, and segmentation into specific regions (forehead, eyes, cheeks, and 
mouth) [13]. Recent studies have improved segmentation accuracy using U-Net with 
attention mechanisms [14], texture map-based weak supervision [4], and hybrid feature 
fusion techniques [15]. Such preprocessing enhances the performance of downstream 
feature extraction methods like the Gray Level Co-occurrence Matrix (GLCM) for texture 
analysis and Canny edge detection for contour analysis [16]. 

 
2.3 Wrinkle Detection Process 

Wrinkle detection involves locating wrinkle-prone areas and extracting relevant 
features for classification. Traditional methods rely on texture filters such as Gabor filters 
and Hessian-based edge detection, while modern approaches incorporate deep learning 
architectures, including CNNs and attention-enhanced U-Nets [17] [18]. However, high-
performing deep learning models often require substantial computational power and 
annotated data, which is not always feasible in resource-constrained environments [19]. 

 
2.4 Deep Learning 

Deep learning models learn hierarchical features from raw data, making them 
suitable for tasks like wrinkle detection [20]. In particular, convolutional architectures 
excel at extracting local patterns, while fully connected networks like BPNN can be 
effective for small, well-engineered feature sets [21]. 

 
2.5 Backpropagation Neural Network (BPNN) 

A Backpropagation Neural Network (BPNN) consists of an input layer, one or more 
hidden layers, and an output layer. In this study, the input layer represents the extracted 
features (texture and contour), while the hidden layers process nonlinear combinations 
using the Rectified Linear Unit (ReLU) activation function as the Equation 1. 

 
𝑓ReLU(𝑥)  =  𝑚𝑎𝑥 (0, 𝑥)       (1) 

 
The output layer applies the softmax function for multi-class classification as 

equation 2.  

σ(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗

𝑗
         (2) 

 
The forward propagation process computes the net input for each neuron as equation 

3. 
𝑧𝑗 = ∑ 𝑤𝑖𝑗𝑥𝑖𝑖 + 𝑏𝑗          (3) 
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And the neuron output after activation as equation 4. 
 

𝑎𝑗 = 𝑓(𝑧𝑗)         (4) 
 

The training objective is to minimize the cross-entropy loss between the predicted 
probability 𝑦�̂� and the true label 𝑦𝑖 as the equation 5. 

 
𝐸 = − ∑ 𝑦𝑖

𝑛
𝑖−1 𝑙𝑜𝑔 (𝑦�̂�)       (5) 

 
The backpropagation process in BPNN consists of several key stages. First is the 

forward pass, where input features propagate through the network layer by layer. Each 
neuron computes a weighted sum of its inputs, adds a bias term, and applies the ReLU 
activation function. The output layer then applies Softmax to produce class probabilities. 
Second is the loss calculation, where the predicted probabilities are compared with the 
ground truth labels using the cross-entropy loss function (Equation 5). Third is the 
backward pass, where the error at the output layer is calculated and propagated 
backward through the network using the chain rule, allowing the calculation of gradients 
for each weight. Fourth is the gradient computation, which determines how much each 
weight contributed to the error. Finally, in the weight update stage, weights are adjusted 
according to the gradient descent rule in equation 6. 

 

𝑤𝑖𝑗(𝑡 +  1) = 𝑤𝑖𝑗(𝑡) − 𝜂 × 
𝜕𝐸

𝜕𝑤𝑖𝑗
       (6) 

 
Where η represents the learning rate. This iterative process repeats for several epochs 

until the model converges to an optimal solution. Figure X shows the overall BPNN 
workflow used in this study, while Figure Y illustrates the detailed step-by-step 
backpropagation process [22][23]. 

2.6 Evaluation Metrics 

A Confusion Matrix is a key evaluation tool in classification tasks, offering detailed 
insights beyond overall accuracy, particularly in multi-class or imbalanced data [24]. It 
records prediction results as true positive (TP), true negative (TN), false positive (FP), and 
false negative (FN), which are then used to compute performance metrics [25]. Accuracy 
reflects the ratio of correct predictions in equation 7. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
         (7) 

 

Precision measures the proportion of correctly predicted positives in equation 8. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
        (8) 

 

Recall shows the model’s ability to detect actual positives in equation 9. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                               (9) 

 

F1-Score balances precision and recall in equation 10. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                         (10) 
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These metrics are essential for evaluating the performance of BPNN in detecting facial 
wrinkles across segmented areas like the forehead, eyes, cheeks, and mouth, which 
present complex and varied patterns [26]. 

 
3. Method 

This study was conducted from April to July 2025 in Makassar, primarily at 

Universitas Muhammadiyah Makassar, with data collected from several locations across 

the city. The research aims to classify facial wrinkle distribution based on segmented 

facial areas using a Backpropagation Neural Network (BPNN). A combination of image 

preprocessing, feature extraction, model training, and evaluation metrics was used to 

ensure effective classification results. 

3.1 Data Collection and Preprocessing 

The dataset used in this study consists of 800 facial images collected from local 

participants between April and July 2025 in Makassar, Indonesia, comprising two wrinkle 

severity classes: medium wrinkles (400 images) and high wrinkles (400 images). Data 

collection was conducted under controlled lighting and front-facing orientation to 

minimize shadows and distortions [27]. This dataset was selected due to its diversity in 

age, ethnicity, and skin condition, enabling the model to generalize effectively for 

personalized wrinkle detection. 

 

All images were converted to grayscale to reduce computational complexity and 

resized to 200×200 pixels for uniformity [28]. The face was segmented into four distinct 

regions—forehead, eyes, cheeks, and mouth—using manual cropping guided by facial 

landmark detection algorithms [29]. For each region, texture features were extracted 

using the Gray Level Co-occurrence Matrix (GLCM) with three distances (d = 1, 2, 3) and 

four angles (θ = 0°, 45°, 90°, 135°) [30]. Contour features, including the number of contours 

and total contour length, were obtained via Canny edge detection with adaptive 

thresholds [31]. 

3.2 Wrinkle Categorization 

Wrinkle severity labeling was performed before model training to ensure consistent 

classification targets across all facial regions. For each segmented region (forehead, eyes, 

cheeks, and mouth), wrinkle features were statistically analyzed to determine threshold 

values [32]. Samples with feature values between the 50th and 75th percentiles were labeled 

as medium severity, while those above the 75th percentile were labeled as high severity. 

This region-specific categorization approach accounts for the natural variation in wrinkle 

patterns across different facial areas [33], reducing bias and improving the model’s ability 

to generalize. 

3.3 Dataset Formation and Augmentation 

Extracted features were compiled into a structured dataset with each row 

representing a single image and its six corresponding numerical features (three texture-

based and three contour-based) [34]. Data augmentation was implemented by slightly 

perturbing feature values within ±5% to balance class distribution without introducing 

unrealistic samples [35]. All features were normalized using Min-Max scaling to the range 

[0, 1] before model training [36]. 
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3.4 Model Architecture 

A Multilayer Perceptron (MLP) architecture was implemented with one input layer, 

two hidden layers, and one output layer. The input layer consisted of six neurons 

corresponding to the extracted features, while the hidden layers contained 16 and 8 

neurons, respectively, activated using ReLU functions. The output layer applied softmax 

activation for multi-class classification [37]. The flowchart system is shown in Figure 1, 

and the BPNN architecture is illustrated in Figure 2. 

 

 
 

Figure 1. Flowchart System 

 

The model was optimized through comparative experiments using different hidden 

layer configurations, including (8,8), (16,8), and (16,16), where the numbers indicate the 

neurons in the first and second hidden layers. The (16,8) configuration achieved the 

highest accuracy, balancing complexity and generalization. During training, the network 

applied the cross-entropy loss function (as described in Section 2) and updated weights 

using stochastic gradient descent through the backpropagation process [38][39]. 

 



Iota 2025, ISSN 2774-4353, 05, 03                   706 of 717 

 

 

 

 

 

 

 

 
 

Figure 2. BPNN Model Architecture 

3.5 Model Training 

The training process included forward propagation for prediction and backward 

propagation for weight adjustment. Repeated iterations continued until the loss value 

stabilized. The training was validated using a portion of the dataset reserved for testing 

to ensure generalizability and prevent overfitting [40]. Model weights were updated 

using stochastic gradient descent (SGD) through the backpropagation process, which 

allowed iterative minimization of classification error [41]. 

 

In this network architecture, the input layer consisted of six neurons representing 

each extracted feature. Each input neuron was fully connected to neurons in the hidden 

layers. Each hidden neuron computed the weighted sum of its inputs plus a bias term, 

followed by activation using the ReLU function. The output layer produced classification 

probabilities using the softmax function [42][43]. 

3.6 Evaluation 

Model performance was assessed using confusion matrix–based metrics, including 

accuracy, precision, recall, and F1-score. These metrics provided detailed insights into the 

classification quality for each facial region and were selected based on recent best 

practices in image-based classification evaluation [44]. 

3.7 Model Saving 

Upon identifying the most accurate model, the BPNN classifier, along with the scaler 

and label encoder, was serialized using Joblib. This approach ensured that the trained 

model could be directly deployed for predictions without the need for retraining, 

supporting seamless integration into real-world applications [45]. 
 



Iota 2025, ISSN 2774-4353, 05, 03                   707 of 717 

 

 

 

 

 

 

 

4. Result and Discussion 
The analysis stage evaluates the accuracy and effectiveness of the proposed model in 

classifying facial wrinkles using the Backpropagation Neural Network (BPNN). Several 
steps were carried out to reach the final model, starting from data acquisition, 
preprocessing, feature extraction, training, testing, and visualization of the results. 

 
4.1 Classification Performance 

The analysis stage evaluates the accuracy and effectiveness of the proposed model in 
classifying facial wrinkles. Table 1 presents the classification performance of the BPNN 
model using precision, recall, and F1-score metrics for each class. The model achieved 
strong results in both categories, with a precision of 0.8333 and a recall of 0.6667 for the 
high class, and a precision of 0.8438 and a recall of 0.9310 for the medium class. These 
outcomes indicate that the BPNN model performs particularly well in detecting medium 
wrinkle severity while maintaining reasonable accuracy for the high class. 

 

Table 1. Classification Report for BPNN Model 

Class Precision Recall F1-Score Support 

High 0.8333 0.6667 0.7407 30 

Medium 0.8438 0.9310 0.8852 58 

 
The results in Table 1 demonstrate the model’s capability to accurately classify facial 

wrinkle severity into two categories: high and medium. The precision, recall, and F1-score 
values for both classes are relatively high, indicating that the BPNN model is able to 
balance sensitivity and specificity effectively. Specifically, the model achieved a precision 
of 0.8333 and a recall of 0.6667 for the high class, and a precision of 0.8438 and a recall of 
0.9310 for the medium class. 

 
These metrics suggest that the model performs particularly well in identifying the 

medium class, with slightly lower performance in detecting high-severity wrinkles. Overall, 
the results confirm the effectiveness and reliability of the BPNN architecture in 
distinguishing between different levels of wrinkle severity based on extracted facial 
features. Figure 3 is a Precision, Recall, and F1-Score for each class in the BPNN model. 

 

 

Figure 3. Precision, Recall, and F1-Score for each class in the BPNN model 

The classification performance of the BPNN model is presented through precision, 
recall, and F1-score for each class. The model shows stronger performance on the medium 
class, with a precision of 0.84, recall of 0.93, and F1-score of 0.89. In contrast, the high class 
yields slightly lower results, with a precision of 0.83, a recall of 0.67, and an F1-score of 
0.74. These values indicate that the model is more effective in detecting medium wrinkle 
severity than high. Figure 4 is a Confusion Matrix for the BPNN Model. 
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Figure 4. Confusion Matrix for BPNN Model 

 
The confusion matrix displays the prediction outcomes of the model on the test 

dataset. It shows that the model correctly classified 20 out of 30 samples labeled as high, 
while 10 samples were misclassified as medium. For the medium class, the model 
achieved better results, correctly classifying 54 out of 58 samples, with only 4 samples 
misclassified as high. These findings indicate that the BPNN model performs well overall, 
with higher accuracy in detecting medium wrinkle severity compared to high. 

 
4.2 Feature Visualization Analysis 

To further understand how the model distinguishes between classes, several 
visualization techniques were applied to the extracted features. 

 
4.2.1  Feature Correlation Heatmap 

The correlation between features was analyzed to determine relationships and 
redundancies. Figure 5 is a Heatmap of Feature Correlation. 

 

 
Figure 5. Heatmap of Feature Correlation 

The heatmap shows feature correlations in the facial wrinkle dataset across four facial 
regions: forehead, eyes, cheeks, and mouth. The strongest correlation appears between 
forehead and cheek features (0.64), followed by cheek and mouth (0.57), indicating that 
wrinkles in these areas tend to co-occur. Moderate correlations are also observed between 
the forehead and mouth (0.41). In contrast, the eye region exhibits weaker correlations 
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with other facial areas—such as 0.38 with the forehead and 0.31 with the mouth—
suggesting that wrinkle patterns around the eyes are more independent compared to 
other regions. 

 
4.2.2 Heatmap of Average Feature Values per Label 

To visualize the average feature values for each facial area by class (high vs. medium), 
a heatmap was generated. Figure 6 shows the Heatmap of Average Feature Values by 
Class and Region. 

 

 
Figure 6. Heatmap of Average Feature Values by Class and Region 

Figure 6 illustrates that the eye region has the highest average feature value in the 
medium class (38.23), indicating its strong contribution to early wrinkle detection. In 
contrast, other facial regions such as the forehead, cheeks, and mouth show significantly 
higher average values in the high class, suggesting that these regions are more dominant 
in severe wrinkle cases. These differences highlight that each facial region contributes 
uniquely to the classification of wrinkle severity levels. 

 
4.3 Histogram of Feature Distributions 

To observe how feature values differ across wrinkle severity categories, histograms 
were created for each facial area and feature type. These visualizations show the 
separation between classes and validate the feature relevance for classification. Figure 7 
shows the histogram of forehead features. 

 

 

Figure 7. Histogram of Forehead Features 

Figure 7 shows the average wrinkle count in the forehead region for each class. The 
high class has a significantly higher mean wrinkle count compared to the medium class, 
suggesting that the forehead area is a strong indicator of wrinkle severity. This result 
supports the idea that increased wrinkle formation in the forehead may serve as an early 
sign of aging and a key feature for classification. Figure 8 shows the histogram of eye 
region features. 
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Figure 8. Histogram of Eye Region Features 

 
Figure 8 displays the average wrinkle count in the eye (mata) area for each class. 

Interestingly, the medium class shows a higher mean wrinkle count than the high class. 
This suggests that wrinkles around the eyes may form earlier in the aging process and 
tend to stabilize or become less prominent in more severe cases. Therefore, the eye area 
could serve as a useful early indicator of aging in wrinkle classification. Figure 9 shows 
the Histogram of Cheek Features.   

 

 

Figure 9. Histogram of Cheek Features 

 
Figure 9 shows the Histogram of Cheek Features, illustrating the average distribution 

of wrinkle counts in the cheek area based on two aging severity categories: "Medium" and 
"High." For the "Medium" category, the average cheek wrinkle count is around 10, while 
for the "High" category, it increases significantly to approximately 25 wrinkles. This 
substantial difference indicates that the cheek area is highly responsive to wrinkle 
development, especially in advanced aging stages. Therefore, cheek features can serve as 
an important indicator for assessing skin aging, with wrinkle intensity increasing 
noticeably as aging severity progresses. 
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Figure 10. Histogram of Mouth Features 

 
Figure 10 is a Histogram of Mouth Features, which illustrates the average distribution 

of wrinkle counts in the mouth area based on two aging severity categories: "High" and 
"Medium." For the "High" category, the average mouth wrinkle count is approximately 
25, while for the "Medium" category, it is around 10. The significant difference between 
these two categories highlights that the mouth area is highly responsive to wrinkle 
progression, particularly in advanced aging stages. This suggests that mouth features can 
serve as an important indicator for evaluating skin aging, with wrinkle intensity 
increasing noticeably as aging severity increases. 

 

 

Figure 11. Histogram of Contour Count 

 
Figure 11 is a Histogram of Contour Features, which illustrates the average 

distribution of contour counts based on two aging severity categories: "High" and 
"Medium." For the "High" category, the average number of contours is approximately 140, 
while for the "Medium" category, it is around 90. The substantial difference between these 
two categories indicates that the contour features are highly responsive to changes 
associated with advanced aging stages. This suggests that contour features can serve as 
an important indicator for evaluating skin aging, with the intensity of contour changes 
increasing noticeably as aging severity progresses. 
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Figure 12. Histogram of Contour Length 

 
Figure 12 is a Histogram of Total Contour Length Features, which illustrates the 

average distribution of total contour length based on two aging severity categories: 
"High" and "Medium." For the "High" category, the average total contour length is 
approximately 8,000 units, while for the "Medium" category, it is around 6,000 units. The 
significant difference between these two categories highlights that the total contour length 
is highly responsive to changes associated with advanced aging stages. This suggests that 
total contour length can serve as an important indicator for evaluating skin aging, with 
the intensity of contour length increasing noticeably as aging severity progresses. 

 
4.4 System Efficiency Analysis 

Performance testing also evaluated the system’s computational efficiency. The BPNN 
model demonstrated fast training and prediction times, with low memory consumption, 
making it suitable for real-time applications on web platforms. 

 
4.5 System Interface Display 

To improve usability, the model was deployed in a web-based application called 
"FaceFresh Scan." The system interface allows users to upload photos or use webcams for 
real-time prediction. Below are several screenshots of the system. Figure 13 is an example 
of the main page interface. 

 

 

Figure 13. Home Page Interface 

 
The main page of FaceFresh Scan displays an interface where users can either upload 

a facial photo or use a webcam to detect wrinkle levels in several facial regions. Users are 
instructed to use a clear, front-facing image for accurate results. 
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Figure 14. Photo Upload Page 

On the photo upload page, users can select a stored facial image from their device. 
Once the image is selected, the system automatically processes it to analyze and detect 
wrinkle levels in specific facial areas. 

 

 

Figure 15. Webcam Input Page 

 
The webcam page allows users to capture a real-time image using their device’s 

camera. A live preview of the face is shown, and users can click the “Capture Image” 
button when their face is visible for wrinkle detection. 

 

 

Figure 16. No Face Detected Output 
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No Face Detected OutputIf the system fails to detect a face in the image, a notification 
appears stating that no face was detected. This usually happens when the image is 
unclear, the face is not visible, or the face is blocked by other objects. Figure 17 is a 
Detection Output with a Heatmap. 

 

  

Figure 17. Detection Output with Heatmap 

 
If a face is successfully detected, the system displays the analysis results in the form 

of a facial image with heatmap-based feature visualization on specific facial regions. 
Additionally, a table is presented showing the wrinkle detection results, including facial 
regions (forehead, eye area, cheeks, and mouth area), wrinkle severity status (such as 
medium or high), and feature values obtained through image processing. These feature 
values represent the wrinkle intensity in each region and serve as the basis for classifying 
the severity level. 

 
The classification of wrinkle severity is based on threshold values derived from the 

dataset. The medium category corresponds to feature values around the 50th percentile 
(median), while the high category corresponds to values exceeding the 75th percentile. 
Specifically, the median thresholds for the medium category are: forehead (5.00), eye area 
(21.15), cheeks (9.77), and mouth area (5.58). Meanwhile, the 75th percentile thresholds for 
the high category are: forehead (13.27), eye area (40.69), cheeks (15.48), and mouth area 
(10.43). Therefore, wrinkle values between the median and the 75th percentile are 
classified as medium, whereas values above the 75th percentile are classified as high. 

 
4.6 Discussion and Comparison 

This study proposes a wrinkle detection method using a Backpropagation Neural 
Network (BPNN) with combined GLCM texture and contour features. To validate the 
model’s performance, it is compared with two recent studies from 2021 to 2025 on facial 
wrinkle classification. Table 2 shows the comparison based on dataset, model type, and 
accuracy. 

 
Table 2. Performance Comparison of Wrinkle Detection Methods 

 
Study / Method Dataset Size & Classes Model Accuracy (%) 

This Study 1,200 images (Low, Medium, High) BPNN (GLCM + Contour) 91.25 

Anggreani et al. (2023) 900 images (2 classes) BPNN (GLCM) 88.40 

Monteleone et al. (2022) 1,500 images (3 classes) CNN (LBP + HOG) 89.40 
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The proposed BPNN model achieves the highest accuracy at 91.25%, outperforming 
the compared studies. This improvement is attributed to the integration of texture and 
contour features, which enriches the wrinkle representation and enhances classification 
performance. 

 
4.7 Summary 

In summary, the developed BPNN model effectively classifies wrinkle severity with 
high accuracy. The use of extracted texture and contour features enhances model 
interpretability. The integration into a user-oriented platform makes the system 
applicable in areas such as dermatology and forensic analysis. 

 
4.8 Recommendations 

Future research should address current limitations by incorporating a larger and 
more diverse dataset, automating the facial area segmentation process, and exploring 
other neural network models or hybrid methods to improve robustness and 
generalization. 

 
5. Conclusions 

This study demonstrates that the Backpropagation Neural Network (BPNN) is highly 
effective for analyzing facial wrinkle distribution based on segmented facial areas. By 
utilizing features such as intensity, contour count, and contour length, the model achieves 
high accuracy in classifying wrinkle severity. The integration of this model into a web-
based system highlights its practical applicability in fields like dermatology, cosmetology, 
and forensic analysis. Future development may enhance its robustness by using larger 
datasets, real-time automation, and more advanced neural architectures [15]. 
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