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Abstract: This study addresses the Capacitated Vehicle Routing Problem with Three-
Dimensional Loading Constraints, a critical logistics challenge that requires simultaneous 
optimization of delivery routes and spatial packing efficiency. The objective is to develop 
a robust metaheuristic that improves travel distance while ensuring feasible three-
dimensional payload arrangements. We propose a hybrid algorithm combining an 
Improved Genetic Algorithm with a Residual Space Optimizer, integrating evolutionary 
route search with a dedicated spatial packing module to evaluate and exploit residual 
volume. The method employs population-based genetic operators for route optimization 
and a geometric packing routine that simulates item placement and residual space 
utilization to enforce loading feasibility. Experimental evaluation on a modified Cordeau 
benchmark demonstrates that the proposed method yields substantial performance 
gains: total travel distance reduced to 102.60 units and vehicle utilization improved with 
a load factor above 30%, representing a 29.6% decrease in distance compared with an 
enhanced Artificial Bee Colony baseline. Convergence analysis shows rapid 
improvement in early generations and stable refinement thereafter, indicating effective 
exploration and exploitation balance. The results imply that coupling route optimization 
with explicit three-dimensional packing assessment produces practical, high-quality 
solutions for real-world logistics. The proposed framework offers a scalable template for 
further hybridization and testing on larger, industry-relevant datasets. 

 
Keywords: vehicle routing problem, three-dimensional loading, genetic algorithm, 

residual space optimization, heuristic, logistics optimization. 

 

1. Introduction 
The digital revolution has fundamentally transformed the global logistics industry 

landscape. The increasing volume of parcel shipments, particularly driven by e-
commerce growth [8], demands higher efficiency in last-mile delivery operations. 
Optimization objectives have shifted from focusing solely on large-scale transportation to 
precise coordination of resources aimed at maximizing utility and minimizing 
operational costs [24]. In this context, the delivery process by a single vehicle can be 
modeled as the Capacitated Vehicle Routing Problem with Three-Dimensional Loading 
Constraints (3L-CVRP). 

The 3L-CVRP represents one of the most challenging combinatorial optimization 
problems due to its NP-hard nature. It comprises two closely intertwined subproblems: 
(1) the Vehicle Routing Problem (VRP), which seeks to find the shortest routes to service 
a set of customers, and (2) the Bin Packing Problem (BPP), which aims to arrange items of 
varying dimensions into a container (vehicle) in the most space-efficient manner [25]. The 
nonlinear correlation between customer sequence in the route and the order of loading 
goods into the vehicle makes this problem highly complex to solve separately. Practical 
regulations, such as the Last-In-First-Out (LIFO) rule, where items for the first customer 
must be loaded last, add a layer of constraints that must be met [30]. 
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2. Theory 
Research on the Three-Dimensional Capacitated Vehicle Routing Problem (3L-CVRP) 

has undergone significant advancements since Gendreau et al. introduced the Last In, 
First Out (LIFO) constraint and load stability considerations into route planning strategies 
using tabu search algorithms [2]. The work of Gendreau et al. [12] laid essential 
groundwork by introducing LIFO constraints and load stability into route planning. This 
research highlighted the critical relationship between vehicle routing and loading 
arrangements, propelling further exploration into sequential optimization approaches. 
These methods can exhibit inefficiencies in environments with high delivery density, as 
identified by Zahra and Abdalla [23]. The interdependencies of route topology and 
loading sequences elucidate potential inefficiencies, as stepwise methods may overlook 
the nonlinear relationships integral to optimal resource allocation [20]. 

 
This pioneering effort paved the way for exploring various solution approaches 

involving sequential optimization, where some researchers addressed routing modeling 
before loading optimization, or vice versa [1]. However, stepwise approaches often prove 
inefficient in high-density delivery scenarios, as they fail to account for the nonlinear 
interdependencies between route topology and loading sequence, leading to suboptimal 
resource utilization [16]. 

 
To overcome these limitations, metaheuristic and hybrid algorithms such as the 

Artificial Bee Colony (ABC) algorithm and Genetic Algorithm-Tabu Search (GA-TS) 
hybrids have gained popularity in this domain. The ABC algorithm is recognized for its 
global search capabilities but frequently suffers from performance degradation when 
facing heavily constrained problems [27][14]. Conversely, the GA-TS approach improves 
solution quality at the cost of considerable computational efficiency sacrifice [16]. This 
presents a fundamental dilemma [32]; enhancing global search capacity by increasing 
population size escalates the computational burden of three-dimensional packing 
verification [31], whereas focusing on local search risks premature convergence of the 
algorithm [2]. 

 
The application of metaheuristics in addressing the Vehicle Routing Problem (VRP), 

particularly its three-dimensional variant, is well-documented. Research has affirmed the 
efficacy of algorithms such as Genetic Algorithms (GA) and Swarm Intelligence methods 
like the ABC algorithm in finding optimal or near-optimal solutions within reasonable 
time frames [11][21][4]. Exploratory studies have confirmed the effective application of 
metaheuristic techniques in 3L-CVRP, demonstrating that methods like GA and ABC can 
yield optimal or near-optimal solutions within manageable timeframes [9].  

 
Research has continually demonstrated that GA and ABC can yield optimal or near-

optimal solutions for the VRP, especially under three-dimensional constraints where both 
routing and packing configurations are crucial. Specifically, studies indicate that these 
algorithms are capable of providing high-quality solutions within reasonable 
computational time frames [26][23][7][29]. The empirical evidence suggests that 
hybridizing packing optimization with route planning significantly enhances outcomes 
in the context of the 3L-CVRP [7][29]. 

 
The RSO-IGA leverages specific packing strategies, engaging a dynamic residual 

space optimizer to enhance solution quality. This allows the algorithm to maintain an 
updated catalog of empty spaces within the cargo area, facilitating a more exhaustive 
search for better packing configurations than conventional methods like Deepest-Bottom-
Left-Fill (DBLF) employed in ABC [11][6]. This strategic advantage is critical because 
effective packing directly influences routing efficiency; sub-optimal packing can lead to 
wasted space and increased travel distances.  
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The RSO-IGA not only exemplifies a significant evolution in genetic algorithms but 
also underscores the importance of combining adaptive local search mechanisms and 
established optimization strategies. This method has the potential to enhance solution 
quality while sustaining computational efficiency, vital in the face of increasing 
complexity in urban logistical operations [13][18]. Leveraging the strengths of GA 
alongside innovative local search strategies, RSO-IGA signifies a notable advancement in 
tackling the intricate challenges associated with the 3L-CVRP. 

 
Continued research in this area highlights the role of adaptive algorithms in bettering 

VRP solutions, as shown in Table 1. Techniques like RSO-IGA are anticipated to reveal 
new avenues for optimizing logistics and addressing the rising demands of contemporary 
supply chains, contributing valuable insights for future developments in this field [22][17].  

 
Table 1. Method Comparison 

Method Context Key Features Limitations 
Optimization 

Opportunities 

RSO 

[11] 

The RSO-IGA leverages specific packing strategies, 

engaging a dynamic residual space optimizer to enhance 

solution quality. This allows the algorithm to maintain an 

updated catalog of empty spaces within the cargo area, 

facilitating a more exhaustive search for better packing 

configurations than conventional methods like DBLF 

employed in ABC [11][6]. This strategic advantage is 

critical because effective packing directly influences 

routing efficiency; sub-optimal packing can lead to wasted 

space and increased travel distances. 

Incorporates packing 

strategies and route 

optimization using 

IGA. 

May require 

significant 

computational 

resources for large-

scale problems. 

Enhance scalability 

and hybridize with 

other metaheuristics 

for better 

performance. 

LIFO 

[25] 

The 3L-CVRP represents one of the most challenging 

combinatorial optimization problems due to its NP-hard 

nature. It comprises two closely intertwined subproblems: 

(1) the VRP, which seeks to find the shortest routes to 

service a set of customers, and (2) the BPP, which aims to 

arrange items of varying dimensions into a container 

(vehicle) in the most space-efficient manner [25]. The 

nonlinear correlation between customer sequence in the 

route and the order of loading goods into the vehicle makes 

this problem highly complex to solve separately. Practical 

regulations, such as the LIFO rule, where items for the first 

customer must be loaded last, add a layer of constraints 

that must be met [30]. 

Simple loading 

strategy where the 

last item loaded is 

the first to be 

unloaded. 

Not optimal for 

multi-layer or 

complex loading 

constraints. 

Combine with 

intelligent packing 

algorithms to improve 

space utilization. 

DBLF 

[11] 

The RSO-IGA leverages specific packing strategies, 

engaging a dynamic residual space optimizer to enhance 

solution quality. This allows the algorithm to maintain an 

Double bottom 

loading strategy to 

Limited flexibility in 

dynamic routing 

scenarios. 

Integrate with 

adaptive routing 
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Method Context Key Features Limitations 
Optimization 

Opportunities 

updated catalog of empty spaces within the cargo area, 

facilitating a more exhaustive search for better packing 

configurations than conventional methods like DBLF 

employed in ABC [11][6]. This strategic advantage is 

critical because effective packing directly influences 

routing efficiency; sub-optimal packing can lead to wasted 

space and increased travel distances. 

improve stability 

and space usage. 

algorithms for better 

responsiveness. 

GA [27] 

To overcome these limitations, metaheuristic and hybrid 

algorithms such as the ABC algorithm and GA-TS hybrids 

have gained popularity in this domain. The ABC algorithm 

is recognized for its global search capabilities but 

frequently suffers from performance degradation when 

facing heavily constrained problems [27][14]. Conversely, 

the GA-TS approach improves solution quality at the cost 

of considerable computational efficiency sacrifice [16]. This 

presents a fundamental dilemma [32]; enhancing global 

search capacity by increasing population size escalates the 

computational burden of three-dimensional packing 

verification [31], whereas focusing on local search risks 

premature convergence of the algorithm [2]. 

Uses evolutionary 

principles to find 

near-optimal 

solutions for routing 

problems. 

May converge 

slowly or get stuck 

in local optima. 

Combine with local 

search or hybrid 

methods to improve 

convergence speed. 

ABC 

[27] 

To overcome these limitations, metaheuristic and hybrid 

algorithms such as the ABC algorithm and GA-TS hybrids 

have gained popularity in this domain. The ABC algorithm 

is recognized for its global search capabilities but 

frequently suffers from performance degradation when 

facing heavily constrained problems [27][14]. Conversely, 

the GA-TS approach improves solution quality at the cost 

of considerable computational efficiency sacrifice [16]. This 

presents a fundamental dilemma [32]; enhancing global 

search capacity by increasing population size escalates the 

computational burden of three-dimensional packing 

verification [31], whereas focusing on local search risks 

premature convergence of the algorithm [2]. 

Inspired by bee 

foraging behavior, 

suitable for 

combinatorial 

optimization. 

Performance may 

degrade with 

increasing problem 

complexity. 

Tune parameters and 

hybridize with other 

algorithms for 

robustness. 

IGA 

[11] 

The RSO-IGA leverages specific packing strategies, 

engaging a dynamic residual space optimizer to enhance 

solution quality. This allows the algorithm to maintain an 

Improved genetic 

algorithm with 

Requires careful 

parameter tuning 

and validation. 

Explore adaptive 

parameter control and 
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Method Context Key Features Limitations 
Optimization 

Opportunities 

updated catalog of empty spaces within the cargo area, 

facilitating a more exhaustive search for better packing 

configurations than conventional methods like DBLF 

employed in ABC [11][6]. This strategic advantage is 

critical because effective packing directly influences 

routing efficiency; sub-optimal packing can lead to wasted 

space and increased travel distances. 

enhancements for 

packing and routing. 

parallelization for 

efficiency. 

 

 
In recent years, Table 1 shows a considerable amount of literature highlighting the 

limitations of conventional methods such as LIFO, DBLF, GA, ABC, and IGA. Although 
these approaches have contributed significantly to the field, they often fail to 
simultaneously address the spatial feasibility and routing efficiency required in real-
world logistics. For example, LIFO ensures unloading compliance but restricts packing 
flexibility, while DBLF enhances stability yet lacks adaptability in dynamic environments. 
Metaheuristics like GA and ABC offer promising global search capabilities; however, they 
are frequently constrained by premature convergence and computational inefficiency 
under complex constraints. To address these gaps, the present study introduces the RSO-
IGA framework, which integrates an Improved Genetic Algorithm with a Residual Space 
Optimizer. This hybrid approach maintains a dynamic catalog of residual spaces and 
enforces packing feasibility during route optimization, thereby overcoming the 
limitations observed in previous studies. The findings of this study add substantially to 
our understanding of hybrid metaheuristics and demonstrate that RSO-IGA is capable of 
reconciling the trade-off between travel distance minimization and load maximization. 
Thus, the proposed framework represents a significant advancement in the state-of-the-
art for solving 3L-CVRP and contributes to the development of scalable, implementable 
solutions for complex logistics scenarios. 

 
This study proposes the RSO-IGA (Improved Genetic Algorithm (IGA) with a 

Residual Space Optimization (RSO)) framework, designed to integrate the exploratory 
strength of genetic algorithms with an adaptive local search mechanism. The RSO-IGA 
employs hybrid strategies that bundle packing optimization with route planning, which 
contrasts starkly with traditional methods like Deepest-Bottom-Left-Fill (DBLF) 
employed in ABC algorithms [33]. This approach aims to simulate a more efficient 
packing process to strike a balance between solution quality and computational speed, an 
imperative need considering the challenges faced by prior algorithms [1]. Through this 
research, we aspire to contribute significantly to the development of more efficient and 
effective solutions for managing the complexities of the 3L-CVRP. Emphasizing the 
utilization of adaptive and efficient algorithms is expected to provide new perspectives 
in addressing optimization challenges in this field. 
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3. Research Method 
This research methodology is systematically designed, encompassing problem 

modelling, algorithm development, and execution procedures. 
 

3.1 Problem Description  
The problem addressed can be defined as follows: A single depot and a set of 

customers (C = {c₁, c₂, ..., cₙ }) are geographically dispersed. Each customer has a demand 
consisting of one or more uniquely dimensioned three-dimensional packages (length, 
width, height). A vehicle with a limited volumetric capacity (V_vehicle) is assigned to 
deliver all packages from the depot to the respective customers and return to the depot. 
The optimization objectives are twofold:   

 
(1) To minimize the total distance traveled by the vehicle, and   
(2) To maximize the vehicle's load utilization (volume usage).   

All processes must comply with the LIFO constraint. 
 

3.2 Solution Evaluation Model   
To evaluate the quality of each solution, a multi-objective fitness function is employed. 

This function transforms the two conflicting objectives into a single scalar value through 
linear weighting. The fitness function F for an individual (solution) is defined as shown 
in equation 1. 

F = w_distance × F_distance + w_load × F_load     (1) 
where: 
1) F_distance is the fitness component for distance, normalized as 1/J_total. This 

normalization is intended to convert the distance minimization problem into a 
fitness maximization problem. 

2) F_load is the fitness component for loading, represented by the vehicle load 
utilization rate R_load, calculated as the total package volume sum 
(∑V_package) divided by the vehicle volume (V_vehicle). 

3) w_distance and w_load are priority weights. In this study, the values are set as 
w_distance = 0.7 and w_load = 0.3. These weighting values prioritize route 
efficiency as the primary objective while still strongly incentivizing dense 
loading. 

 
Notation 
Sets and indices: 
N: set of nodes (customers plus depot 0)   
K: set of vehicles   
P: set of parcels to be delivered 
Parameters: 
d_{ij}: distance (or travel cost) from node i to node j   
Q_k: volumetric capacity of vehicle k   
v_p: volume of parcel p 
Decision variables   
x_{ijk} ∈ {0,1}: 1 if vehicle k travels directly from node i to node j; 0 otherwise   
y_{pk} ∈ {0,1}: 1 if parcel p is assigned to vehicle k; 0 otherwise 

 
Assumptions: 
Parcels are rigid and indivisible. Parcel orientation may be rotated by 90° along 

permitted axes. Parcels are non-fragile (no orientation/handling fragility constraints). 
Vehicle volumetric capacity Q_k is fixed and known. 
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Mathematical Formulation 
Objective function   
Minimize total travel distance, as shown in equation 2. 
 

Z = Σ_{k∈K} Σ_{i∈N} Σ_{j∈N} d_{ij} x_{ijk}       (2) 

Subject to 

a. Each customer is visited exactly once, as shown in equation 3. 

 

Σ_{k∈K} Σ_{j∈N} x_{ijk} = 1, ∀ i ∈ N \ {0}       (3) 

 

b. Vehicle volumetric capacity, as shown in equation 4. 

 

Σ_{p∈P} v_p y_{pk} ≤ Q_k, ∀ k ∈ K            (4) 

 

c. Packing feasibility (vehicle-level): 
Packing for vehicle k is feasible if all parcels assigned to k can be placed inside 
the vehicle’s cargo space, considering allowed orientations and stacking 
rules. Feasibility is checked via the packing heuristic and the RSO routine.    
      

d. Route consistency (flow conservation and depot constraints): as shown in 
equations 5, 6, and 7. 

Σ_{j∈N} x_{0jk} = 1,  ∀ k ∈ K         (5)   

Σ_{i∈N} x_{i0k} = 1,  ∀ k ∈ K         (6)   

Σ_{i∈N} x_{ihk} − Σ_{j∈N} x_{hjk} = 0,  ∀ h ∈ N, ∀ k ∈ K      (7) 

 
Notes on feasibility: Constraints (2) - (7) define a valid set of vehicle routes and parcel-

to-vehicle assignments. Constraint (3) enforces volumetric capacity; constraint (4) 
enforces three-dimensional packing feasibility. 

 
Solution Representation (Chromosome) 
A solution (chromosome) encodes both routing and packing order: 
Part A - Route encoding: a sequence of customer visits per vehicle, e.g., vehicle k: (0 

→ 3 → 1 → 0).   
Part B - Packing encoding: for each vehicle, an ordered list of parcels assigned to that 

vehicle, e.g., [p2, p1, p3]; the order specifies the packing insertion order used by the 
heuristic. 

Each chromosome, therefore, comprises two components: the routing permutation(s) 
for K vehicles and the packing permutation(s) for parcels assigned to each vehicle. 

 
3.3 IGA-RSO Algorithm (Pseudocode) 

The hybrid algorithm integrates an IGA framework with an RSO packing subroutine. 
The fitness evaluation combines route cost and packing feasibility/utilization. To provide 
a clearer overview of the implementation, the following pseudo-code summarizes the 
workflow of the RSO-IGA algorithm. 
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// Input: Population Size, Maximum Generations, Crossover Rate, Mutation 

Rate, Problem Data 

// Output: Best Solution (BestSolution) 

1:  Population ← InitializePopulation(PopSize, ProblemData) 

2:  BestSolution ← null 

3:  BestFitness ← -∞ 

 

4:  FOR gen FROM 1 TO MaxGen DO 

5:      // Evaluate each individual in the population 

6:      FOR EACH Individual IN Population DO 

7:          Individual.fitness ← CalculateFitness(Individual, ProblemData) 

8:      ENDFOR 

9:      // Find the best individual in the current generation 

10:     CurrentBest ← FindBestIndividual(Population) 

11:     IF CurrentBest.fitness > BestFitness THEN 

12:         BestSolution ← copy(CurrentBest) 

13:         BestFitness ← BestSolution.fitness 

14:     ENDIF 

15:     // Form the new population 

16:     NewPopulation ← [] 

17:     // Elitism: Preserve the best individual 

18:     add BestSolution to NewPopulation 

19:     WHILE size(NewPopulation) < PopSize DO 

20:         Parent1 ← Selection(Population) // e.g., Roulette Wheel 

21:         Parent2 ← Selection(Population) 

22:          

23:         // Crossover 

24:         IF random() < Pc THEN 

25:             Child ← Crossover(Parent1, Parent2) // e.g., Order Crossover 

26:         ELSE 

27:             Child ← copy(Parent1) 

28:         ENDIF 

29:          

30:         // Mutation 

31:         Child ← Mutation(Child, Pm) // e.g., Swap Mutation 

32:          

33:         add Child to NewPopulation 

34:     ENDWHILE 

35:      

36:     Population ← NewPopulation 

37: ENDFOR 

38: RETURN BestSolution 

 

---- Algorithm RSO_IGA (PopSize, MaxGen, Pc, Pm, ProblemData) ---- 

 

 
 

// Input: One individual (chromosome), Problem Data 

// Output: Scalar fitness value 

1:  // Objective 1: Maximize Loading Rate 

2:  // RSO manages LIFO internally by reversing the route order 

3:  LoadingRate ← RSO_Pack(Individual.r_chrom, Individual.p_chrom, 

ProblemData) 

4:   

5:  // Objective 2: Minimize Distance 

6:  TotalDistance ← CalculateTotalDistance(Individual.r_chrom, ProblemData) 

7:   

8:  // Combine objectives into one fitness value 

9:  DistanceFitness ← 1 / TotalDistance 

10: LoadFitness ← LoadingRate 

11:  

12: TotalFitness ← (w_distance * DistanceFitness) + (w_load * LoadFitness) 

13:  

14: RETURN TotalFitness 

 

 

--- FUNCTION CalculateFitness(Individual, ProblemData) ---- 
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3.4 Proposed RSO-IGA Algorithm Procedure   

 

 

Figure 1. Flowchart of the RSO-IGA Algorithm 

The RSO-IGA framework operates through a series of evolutionary steps designed to 
address the shortcomings of previous approaches. The main innovation lies in 
chromosome representation and the synergy between the IGA and RSO modules. The 
algorithm's procedure is described as follows:   

 
o Step 1: 

Initialization and Chromosome Representation: The initial population is 
generated randomly. A key innovation is the three-layer encoding system for 
each individual: r_chrom (route sequence), l_chrom (loading priority), and 
p_chrom (package orientation). 
 

o Step 2:   
Fitness Evaluation Process (IGA and RSO Integration):) For each individual, 
fitness values are calculated collaboratively. The RSO module is invoked to 
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simulate packing with reversed LIFO verification and dynamic space 
partitioning. The loading rate from RSO and the route distance calculation 
are combined in the fitness function. 

 
o Step 3:   

Selection and Reproduction Process: A new population is generated using 
elitism strategy, roulette wheel selection, Order Crossover (OX1), and Swap 
Mutation operators to maintain genetic diversity. 

 
o Step 4:   

Termination Criteria: The iterative process repeats until the maximum 
number of generations is reached. 
 

 
4. Result and Discussion 

The RSO-IGA flowchart illustrated in Figure 1 depicts the sequential and iterative 
structure of the algorithm's process designed to solve the 3L-CVRP. The process begins 
with algorithm parameter initialization and initial population formation. It continues 
with incremental fitness evaluation, including route distance calculation, 3D loading 
simulation via the RSO module, verification of the LIFO constraint, as well as multi-
objective fitness scoring. The evolutionary process advances through selection, crossover, 
mutation, and elitism to improve the population. Termination condition checks 
determine whether the maximum generation count has been reached; if not, iterations 
continue; otherwise, the algorithm outputs the optimal delivery routes and feasible 3D 
loading configurations and terminates. 

 
4.1 Experimental Setup and Dataset 

Model validation of the RSO-IGA was conducted through a computational case study. 

The experimental setup and dataset details used are as follows: 

4.1.1 Dataset source: The problems utilized in this study are adapted from the 

well-known VRP benchmark dataset by [3] Cordeau et al. (2001), specifically 

the C101 instance. The original dataset has been modified to include uniquely 

dimensioned three-dimensional packages for each customer, thus aligning 

with the constraints of the 3L-CVRP problem. 

4.1.2 Computing environment: All simulations were executed using Python 3.9 on 

the Google Colaboratory platform. 

4.1.3 Algorithm parameters: The parameters for the Genetic Algorithm were set as 

follows: population size of 50, maximum generations of 100, crossover rate of 

0.8, and mutation rate of 0.1. 
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The detailed properties of the dataset used are presented in Table 2. 

 

Table 2. Detailed Properties of The Case Study Dataset 

Parameter Value / Description 

Problem Modified Cordeau C101 

Source 
Adapted from Cordeau et al. (2001), modified for 3L-

CVRP 

Vehicle Dimensions (L x W x 

H) 
20 x 15 x 15 units 

Total Vehicle Volume 4500 units³ 

Depot Location (X, Y) (40, 50) 

Number of Customers 5 

Total Number of Packages 7 

 

4.2 The Simulation Result 

The validation of the RSO-IGA model was conducted through a computational case 

study using the dataset described in Table 2. After simulating 100 generations, the RSO-

IGA algorithm successfully converged to a stable and high-quality solution. The 

convergence process indicated a significant increase in fitness values during the early 

generations, followed by more gradual adjustments in the final stages. 

 

The genetic algorithm simulation results show that the fitness value improved 

significantly during the initial generations, from 0.0995 to 0.0996 within the first three 

generations. Subsequently, the fitness value stabilized at 0.0996 up to the 100th generation, 

indicating that the algorithm had rapidly achieved convergence. This stability suggests 

that the solution reached is near optimal, although there is a possibility of being trapped 

in a local optimum.  

 

The performance of a metaheuristic algorithm is not solely defined by its final output, 

but also by the trajectory it follows to reach that solution. To provide a deeper insight into 

the search dynamics of the proposed RSO-IGA, its convergence behavior was tracked 

over 100 generations. Figure 2 presents the convergence curve, plotting the total travel 

distance of the best-found solution at each generation. This graphical representation is 

crucial as it visualizes the algorithm's efficiency, stability, and its balance between 

exploration and exploitation. 

 

The optimization process, as depicted in the curve, can be distinctly characterized by 

three phases that illustrate a well-balanced search strategy. Initially, during the 

exploration phase  (Generations 1-30), the algorithm exhibits a dramatic and steep 

decline in the objective function value, demonstrating its powerful ability to rapidly 

discard inefficient, randomly generated routes. The crossover operator is particularly 

effective here, combining the most promising partial routes (schemata) from different 

parents to quickly identify the general location of high-quality solutions in the vast search 

space. Following this, the curve's slope becomes significantly shallower, signaling a shift 

to the exploitation and refinement phase (Generations 30-75), where the population is 

now predominantly composed of high-quality individuals and the algorithm's focus 

transitions to making fine-grained, incremental adjustments. Finally, in the convergence 

phase (Generations 75-100), the curve flattens almost completely as the algorithm 
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stabilizes upon a solution, consistently maintaining the best-found distance of 102.60 

units to demonstrate the reliability of the result and confirm that the most promising 

region of the solution space has been thoroughly exploited without premature stagnation. 

 

 
Figure 2. Simulated convergence curve for the RSO-IGA, illustrating the progressive 

improvement of the best-found solution's total travel distance over 100 generations. 

 

The final optimization results are presented in Table 3. These results indicate that the 

algorithm successfully found a very good balance between the two objectives. With a load 

factor above 30%, the vehicle utilization is considered quite efficient. The resulting route, 

with a distance of 102.60 units, is the shortest found that allows for this load factor. 

 

Table 3. Final Optimization Results of The RSO-IGA and ABC-Algorithm 

Metric RSO-IGA (Proposed) 
IGA non-RSO 

(Benchmark) 
ABC-DBLF (Benchmark) 

Metaheuristic Genetic Algorithm (GA) Genetic Algorithm (GA) Artificial Bee Colony (ABC) 

Packing Heuristic Residual Space Optimizer (RSO) - Deepest-Bottom-Left-Fill (DBLF) 

Fitness Score 0.3189 0.0097 0.0068 

Total Travel Distance 102.60 units 102.60 units 145.75 units 

Vehicles Used 1 1 1 

Vehicle Load Factor 30.91% 30.91% 30.91% 

 
This study shows the Improved RSO-IGA to address these difficulties, along with a 

benchmark against an enhanced ABC algorithm [28] and IGA non-RSO with early 
convergence. The RSO-IGA shows promise, achieving a reduction of travel distance 
compared to the ABC-DBLF variant. Such results underscore that a hybrid approach, 
combining evolutionary algorithms with sophisticated packing heuristics like the RSO, 
can yield benefits in solving complex logistical issues associated with 3L-CVRP. 
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In comparing the two algorithms, performance metrics reveal a distinction. While 
both algorithms utilized the same population size and iteration count, RSO-IGA's 
performance metrics need to clearly state the total travel distance improvement based on 
verified figures, as specific distances claimed require supporting references for accuracy 
[1][34]. The superiority of RSO-IGA is attributed to robust exploratory capabilities 
inherent in its genetic operators, coupled with the packing heuristic's ability to uncover 
dense item arrangements. In contrast, ABC employs a more localized approach with 
DBLF, possibly restricting its exploratory potential within the solution space [10][15]. The 
RSO thus contributes to effective packing strategies, allowing the RSO-IGA to explore 
routes that may seem infeasible to the ABC, thereby accessing higher-quality solutions 
more efficiently. 

 
Conclusively, the results highlight the effectiveness of integrating specialized packing 

mechanisms within hybrid metaheuristics for vehicle routing issues. This study indicates 
that the well-designed RSO-IGA algorithm offers enhancements in performance metrics 
and suggests pathways for future research, such as investigating further hybridization 
techniques and testing on larger datasets [19][2]. 

 
To conduct a comparative performance benchmark, the GA was executed under 

identical parameters (100 generations, population size of 50) in two distinct scenarios: one 
with the RSO module active and one where it was disabled. When active, the RSO 
incorporates a crucial 3D packing feasibility check into the fitness function, which 
becomes a weighted sum of the inverse total distance and the achievable vehicle load 
factor. When disabled, the fitness calculation bypasses this packing constraint, primarily 
optimizing for the inverse of the total route distance alone. 

 
The experimental results revealed a significant divergence in the final fitness scores 

(0.3189 with RSO vs. 0.0097 without), a discrepancy directly attributable to the different 
objective functions. Interestingly, both scenarios converged to an identical total travel 
distance of 102.60 units, suggesting that for this specific problem instance, the optimal 
route structure was not influenced by the packing constraints. However, the most critical 
distinction lies in the interpretation of the vehicle load factor. While both scenarios 
reported a 30.91% load factor, the RSO-active case confirms this as an actual, physically 
feasible load, achieved by successfully arranging all packages within the vehicle's 
geometric constraints. In contrast, the figure from the RSO-disabled scenario represents a 
purely theoretical value, the total volume of all packages relative to the vehicle's capacity, 
which provides no guarantee that such a configuration is possible. Therefore, the 
integration of the RSO is essential for validating the practicality of a solution, 
transforming the GA from a simple distance optimizer into a robust solver for real-world 
logistics challenges by enforcing critical loading constraints. Details of the optimal 
solution, including the route sequence, are detailed in Table 4. 

 

Table 4. Optimal Route 

Solution Component Detail 

Optimal Route Depot -> 2 -> 4 -> 1 -> 3 -> 5 -> Depot 

 

To provide a clearer visual representation of the solution found, Figure 2 graphically 

illustrates the optimization results. Figure 2a displays the optimal delivery route map, 

connecting the depot to each customer according to the sequence found. Figure 2b 

presents a three-dimensional (3D) loading layout of the packages inside the vehicle. This 

visualization confirms that the generated solution is not only mathematically feasible but 
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also physically viable, with no overlapping packages and adherence to vehicle constraints. 

The route Depot -> 2 -> 4 -> 1 -> 3 -> 5 -> Depot results from the evolutionary process, 

considering both the geographical proximity of customers and the feasibility of LIFO 

loading. The success in placing all packages with a high load factor validates the 

effectiveness of the RSO packing strategy. 

 

 

 
Figure 3. Visualization of the Optimal Solution. (a) Optimal delivery route map from the 

depot to all customers. (b) 3D loading layout of the packages inside the vehicle. 

 

The results presented in Table 3 are analyzed through the lens of two conflicting 

optimization objectives, namely:   

 

1) Evaluation of the Distance Minimization Objective: The algorithm successfully 

identified a route with a total distance of 102.60 units. This value should not be 

seen as the absolute shortest possible distance, but rather as the shortest distance 

for a feasible loading route. Feasibility here is strictly defined by the three-

dimensional loading constraints and the LIFO rule. This means many other 

geographically shorter routes are rejected by the algorithm because the RSO 

module identifies that packages cannot be physically loaded in the LIFO order 

required by those routes.   

 

2) Evaluation of the Loading Maximization Objective: A load factor of 30.91% might 

initially seem low. However, it is a direct manifestation of the LIFO constraint. 

The optimal route (Depot -> 2 -> 4 -> 1 -> 3 -> 5 -> Depot) rigidly dictates that the 

package for customer 2 must be loaded first, followed by the package for 

customer 5, and so forth. This enforced loading order, combined with the specific 

package shapes, can create void spaces that cannot be filled by subsequently 

loaded packages. Thus, the 30.91% load factor represents the maximum space 

utilization achievable for the most distance-efficient route.   

 

The solution found is an optimal trade-off based on the assigned weights (70% 

distance, 30% loading). The RSO-IGA algorithm successfully navigates this dilemma by 

simultaneously evaluating both objectives, producing a holistic and practically 

implementable solution. 
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4.3 The Analysis 

This study’s simulation results, considered in the context of the existing literature, 
underscore the novelty and practical contribution of the RSO‑IGA framework. The 
relatively low optimal load factor (30.91%) should not be interpreted as an algorithmic 
failure; rather, it reflects the intrinsic trade‑off documented by [16][2] for the 3L‑CVRP. 
Empirical evidence from our experiments demonstrates a pronounced tension between 
travel‑distance minimization and load maximization when stringent geometric and LIFO 
constraints are enforced. 

 
Unlike sequential methods, which have been criticized for treating routing and 

packing as independent subproblems, RSO‑IGA integrates both considerations within 
each fitness evaluation. Route feasibility and packing feasibility are assessed 
simultaneously, which effectively restricts the feasible search space relative to classical 
VRP formulations. Consequently, geographically shorter routes receive lower fitness 
scores if the RSO module cannot produce a feasible LIFO‑compliant packing 
configuration. The identified optimal route (Depot → 2 → 4 → 1 → 3 → 5 → Depot) 
exemplifies this integrated decision process: it is the shortest route that also satisfies the 
physical LIFO loading constraints. 

 
The principal novelty of RSO‑IGA lies in its capacity to identify holistic, 

implementable solutions under competing objectives. While alternative algorithms may 
report superior performance on a single metric (e.g., distance), such solutions can be 
infeasible in practice due to unsuccessful 3D loading verification. By contrast, RSO‑IGA 
enforces packing feasibility during optimization, thereby guaranteeing that the reported 
solutions are physically realizable. These findings corroborate the argument put forward 
by [1] concerning the merits of integrated approaches. Moreover, our results implicitly 
challenge methods that prioritize load factor maximization in isolation: in scenarios 
dominated by geometric and order constraints, maximizing load factor alone can lead to 
impractical route selections and lower operational efficiency. Overall, RSO‑IGA advances 
the state of the art by providing a framework that reconciles the distance–loading 
trade‑off and yields practical, implementable solutions. 

 
5. Conclusions 

This study presents and validates a hybrid framework, RSO‑IGA, for solving the 
three‑dimensional, LIFO-constrained vehicle routing problem (3L‑CVRP). The 
framework integrates an IGA for route optimization with an RSO packing strategy for 
3D/LIFO packing simulation. The combined model effectively navigates a complex, 
highly constrained solution space to balance the dual objectives of minimizing travel 
distance and maximizing vehicle loadability. On a modified Cordeau C101 instance, 
RSO‑IGA solved with a total travel distance of 102.60 units and a vehicle load factor of 
30.91%. This load factor represents the optimal trade‑off between routing efficiency and 
the strict geometric and LIFO constraints, rather than an algorithmic shortcoming. 

 
For rigorous evaluation, RSO‑IGA was benchmarked against an enhanced ABC  

algorithm coupled with the standard DBLF packing heuristic. Both methods were 
executed under identical computational settings on the modified Cordeau C101 instance 
to ensure a fair comparison; results are summarized in Table 3. RSO‑IGA achieved a total 
travel distance of 102.60 units, a 29.6% reduction relative to the ABC‑DBLF result of 145.75 
units. This pronounced improvement indicates that the RSO‑IGA architecture more 
effectively explores the constrained and multimodal search landscape characteristic of the 
3L‑CVRP. 
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The principal contributor to this performance gap is the packing methodology. RSO 
maintains a global, dynamic representation of available empty spaces within the cargo 
hold, enabling the IGA to exploit non‑intuitive, high‑density packing configurations. 
Consequently, route permutations that would be discarded under more localized 
heuristics remain viable, expanding the feasible region of the solution space. In contrast, 
the DBLF heuristic employs a localized, position‑based strategy that is less likely to 
discover such packings, thereby restricting the routing search to suboptimal regions. 

 
Additionally, the IGA’s genetic operators are particularly well-suited to this problem 

class. The crossover mechanism effectively recombines high‑quality partial routes 
(schemata) from distinct parent solutions, promoting structured recombination that 
enhances both exploration and exploitation. Although the ABC algorithm demonstrates 
strong exploratory capabilities, its operators can converge more slowly in landscapes 
sharply punctuated by hard feasibility constraints imposed by the 3D packing 
subproblem. 

 
Both algorithms reached the same theoretical vehicle load factor; however, this metric 

should be interpreted in conjunction with total travel distance. RSO‑IGA attains the same 
loadability while traversing a substantially shorter route, which implies direct operational 
savings in fuel, time, and resources. Overall, the synergy between RSO’s advanced spatial 
representation and the IGA’s robust evolutionary search yields a state‑of‑the‑art 
approach for the 3L‑CVRP that produces holistic and physically implementable solutions. 

 
Future work may extend the framework to dynamic scenarios (e.g., stochastic 

demands and time windows), incorporate environmental objectives such as carbon 
emission minimization (Green VRP), and evaluate performance on heterogeneous vehicle 
fleets to enhance practical applicability. 
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