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Abstract: The development of machine learning methods in the last few decades has 
shown great potential in various predictive applications, including in domains such as 
financial prediction, medical diagnosis, and big data analysis. One of the most widely 
used methods in prediction tasks is Long Short-Term Memory (LSTM). LSTM has become 
popular because of its ability to handle time series data by retaining relevant information 
in the long term and the ability to forget irrelevant information through the forget-gate 
mechanism. However, along with the development of technology and the need to 
improve accuracy and efficiency, new methods such as the Kolmogorov Arnold Network 
(KAN)  have emerged. KAN was then developed into the Temporal Kolmogorov Arnold 
Network (TKAN), which was designed to match or even surpass the performance of 
LSTM. The TKAN architecture has produced significant improvements in the 
management of both new and historical information. Because of this capability, TKAN 
can excel in multi-step predictions, demonstrating a clear advantage over conventional 
models such as LSTM and GRU, particularly in the context of long-term forecasting. This 
research goal is to give insight into the comparison of both the TKAN and LSTM models 
for weather prediction using model loss and mean absolute error evaluation (MAE). The 
model for both LSTM and TKAN achieved 0.09 and 0.11 for model loss and 0.08 and 0.96 
for MAE. 
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1. Introduction 
The development of machine learning methods in the last few decades has shown 

great potential in various predictive applications, including in domains such as financial 
prediction, medical diagnosis, and big data analysis. One of the most widely used 
methods in prediction tasks is Long Short-Term Memory (LSTM). LSTM has become 
popular because of its ability to handle time series data by retaining relevant information 
in the long term and the ability to forget irrelevant information through the forget-gate 
mechanism [1], [2]. These advantages make LSTM more effective compared to other 
methods, especially in overcoming the vanishing gradient problem often faced by 
traditional recurrent neural networks. 

However, along with the development of technology and the need to improve 
accuracy and efficiency, new methods such as the Kolmogorov Arnold Network (KAN) 
[3, 17, 18, 19, 20] have emerged. KAN was then developed into the Temporal Kolmogorov 
Arnold Network (TKAN), which was designed to match or even surpass the performance 
of LSTM. TKAN is made with a similar architecture to LSTM, including the forget-gate 
mechanism, but with the integration of kernel attention that can capture temporal 
information more effectively [4]. 
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In addition, recent approaches such as the use of Transformer-based models for time 
series forecasting have also yielded promising results, indicating that the integration of 
attention techniques can improve prediction accuracy, especially in highly variable and 
dynamic data [5]. This study aims to review the performance of these two algorithms, 
namely LSTM and TKAN, both in terms of computational load and evaluation of 
prediction errors. Thus, it is expected to obtain deeper insights into the advantages and 
limitations of each method, as well as recommendations for the use of the most 
appropriate algorithm according to the context and needs of the application. 

 
2. Literature Review 

In the era of deep learning, the development of advanced algorithms for temporal 
data modeling has gained significant momentum. Temporal Knowledge Attention 
Networks (TKAN) and Long Short-Term Memory (LSTM) networks are among the most 
prominent architectures employed for handling complex sequence prediction tasks. This 
review focuses on the evolution, applications, and comparative analysis of TKAN and 
LSTM algorithms. 

 
2.1 Long-Short Term Memory 

Long Short-Term Memory (LSTM) networks have maintained their position as a 
cornerstone in temporal data analysis. The core design of LSTM, which includes 
forgetting, input, and output gates, has been refined to improve the handling of long-term 
dependencies and mitigate issues such as the vanishing gradient problem [1]. 

LSTM has continued to play a pivotal role in NLP tasks, particularly in sentiment 
analysis, text generation, and machine translation. In 2020, Huang et al. demonstrated 
that LSTM models combined with attention mechanisms could significantly enhance the 
performance of sentiment classification models by emphasizing contextually relevant 
information within textual data[6, 11, 12, 13, 14, 15, 16]. Furthermore, Liu et al. (2021) 
utilized LSTM networks for automatic text summarization, leveraging their ability to 
understand and generate coherent summaries from large text corpora[7]. 

LSTM's application in financial forecasting has also expanded, particularly through 
hybrid models that combine LSTM with other techniques to improve prediction accuracy. 
Zhang et al. (2020) introduced a hybrid LSTM-ARIMA model for stock price prediction, 
which outperformed traditional models by capturing both linear and nonlinear patterns 
in financial time series data [8]. A further improved this approach by incorporating a 
Bayesian optimization framework, which dynamically adjusted the LSTM 
hyperparameters to optimize performance across different market conditions[9]. 

 
2.2 Temporal Kolmogorov-Arnold Network 

The architecture of the Kolmogorov-Arnold Network (KAN) for time series 
forecasting incorporates both recurring and gating mechanisms to improve stability and 
performance. The authors developed temporal Kolmogorov-Arnold Networks (TKANs), 
which combine the strengths of recurrent neural networks (RNNs) with those of 
Kolmogorov-Arnold Networks, and effectively address the long-term dependency 
problems that traditional RNN models often face. Using Recurrent Kolmogorov-Arnold 
Networks (RKANs), the TKAN architecture has produced significant improvements in 
the management of both new and historical information. Because of this capability, TKAN 
can excel in multi-step predictions, demonstrating a clear advantage over conventional 
models such as LSTM and GRU, particularly in the context of long-term forecasting. 

When applied to real historical market data, TKAN is more stable and performs better 
than GRU and LSTM. However, TKAN may not be as effective for short-term predictions, 
but it significantly outperforms existing models in multi-step forecasting. These results 
confirm the effectiveness of the KAN framework in practical time series applications and 
suggest that TKAN provides valuable advancements in the accuracy and robustness of 
long-term forecasting. 

Finally, the results demonstrate the ability of TKAN to solve complex problems in 
temporal prediction. These findings also pave the way for the improvement and 
application of this architecture in various time series analysis scenarios [10]. 
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3. Methodology 
In this research, to achieve the result, several methods are required. this research 

follows an experimental design where both models are trained and evaluated using the 
same dataset.  

 
3.1 Data Collection 

The dataset used for this research is acquired from the Kaggle website. It consists of 
weather data from 1980 to 2024. The data features that are used for training are 
temperature, relative humidity, and precipitation. Hence, the goal is to predict the rainfall 
based on the features we have selected. 

 
3.2 Data Preprocessing 

Before using the data to be trained, pre-processing data is done. 
1. Data Filtering 

The dataset is filtered which only involves entries up to 2023-12-31 in y-m-d 
format. 

2. Normalization 
Min-max scaler normalization is applied to the selected features which scale the 
data to a range of [0,1]. 

3. Sequence Creation 
The features are converted into a sequence of lengths of 20 

4. Splitting Data 
The dataset split ratio for train and testing with 80% and 20% of the data. 
 

3.3 Model Implementation 
In this research, the Model Implementation process that we use uses Keras 

TensorFlow for both the LSTM and TKAN model. The description is as follows: 
 
3.3.1 TKAN (Temporal Kolmogorov Arnold Network) 
The Kolmogorov Arnold Networks model can described as following equation 1. 

𝑓(𝑥) = ∑ 𝑤𝑖𝜙(𝑥𝑖)

𝑛

𝑖=1

 

 
 
(1) 

 
Where wi are weights, xi are inputs, and ϕ(xi) are activation functions. 
 
Furthermore, to incorporate temporal dependencies, the KAN is extended by adding 

a temporal component. This involves using recurrent connections to capture long-term 
dependencies. The equation is following equation 2. 

 
ℎ𝑡 = 𝑓(ℎ𝑡−1, 𝑥𝑡)        (2) 

 
Where ht is the hidden state at time t, xt is the input at time t., and the final output yt 

is calculated based on the hidden state ht. yt can be written as equation 3. Where g is an 
output activation function. 

𝑦𝑡 = 𝑔(ℎ𝑡)        (3) 
 
 
3.3.2 Long-Short Term Memory (LSTM) 
The LSTM model can described as following equation 4 
 

𝑐𝑡 =  𝑓𝑡⨀𝑐𝑡−1 + 𝑖𝑡  ⨀ 𝑐̆𝑡       (4) 
 
Where ct is the cell state at time t, ft is the forget gate, it is the input gate, and 𝑐̃𝑡 is the 

candidate cell state. ht can be written in equation 5. 
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ℎ𝑡 =  𝑜𝑡  ⨀ ℴ(𝑐𝑡)       (5) 

 
Where ht is the hidden state at time t, and ot is the output gate. Then 𝑦𝑡  can be written 

as equation 6. 
𝑦𝑡 = 𝑔(ℎ𝑡)        (6) 

 
Where g is an output activation function. Finally, In this research, the performance 

matrices to be used are model loss and Mean Absolute Error.  
 

 
4. Result and Discussion 

For both models, the same configuration is applied to see the differences. The 
configuration is shown in Table 1. 

 

Table 1. Training Setting 

Hyperparameter LSTM TKAN 

Optimizer Adam  Adam 

Epoch 50 50 

Batch Size 64 64 

Callback Early stopping Early stopping 

 

Based on Table 1, the hyperparameter used is a model optimizer using Adam 
Optimizer, the epoch is 50, and the batch size is 64. While training the model will be 
stopped if it reaches the optimal point using the early stopping method. 

 
4.1 LSTM Model Loss and TKAN Model Loss 

From the test results, For the LSTM model, the result of model loss is in Figure 1. 
Moreover, the mean absolute error results are shown in Figure 2. 

 

Figure 1. LSTM Model Loss 
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Based on Figure 1, the initial loss is around 0.18, also showing a sharp decline within 
the first few epochs. The model also shows fast stabilization, reaching a consistent loss 
value after epoch 4 and maintaining sTable performance throughout the training process. 

 

Figure 2. TKAN Model Loss 

Based on Figure 2, the initial loss starts higher around 0.2 but rapidly decreases as 
training progresses. The model also showed improvement in loss reduction in the first 
few epochs, reaching a more stable loss curve around epoch 5. However, fluctuations are 
observed in the validation loss after epoch 10. The final training loss stabilizes at around 
0.12, with some oscillations in the validation loss. 

 

Table 2. Performance Comparison for Model Loss 

Model Model Loss Train Model Loss Validation 

LSTM 0.09 0.11 

TKAN 0.11 0.17 

 

Based on Figure 3, the model loss comparison for both models using model loss 
evaluation, the LSTM outperforms the TKAN model in terms of overall model loss. 
Hence, LSTM shows a faster convergence and better generalization. While TKAN shows 
potential for loss reduction.  

 
4.2 LSTM MAE and TKAN MAE 

The final comparison is to compare the Mean Absolute Error for both LSTM and 
TKAN models. The results are shown in Figure 3 and Figure 4.  

 
Table 3. MAE Comparison 

Model MAE Training MAE Validation 

LSTM 0.08 0.07 

TKAN 0.96 0.10 
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Figure 3. LSTM MAE 

 
Based on Figure 3, the initial value from MAE is around 0.13 for training and 0.09 for 

validation. The model shows a peak for validation MAE of around 0.16 for the model. It 
is also showing a decrement for both training and validation while training. Although the 
model shows a significant decrease in MAE value, it shows an overfitting for the model.  

 

Figure 4. TKAN MAE 

Based on Figure 4, the initial state for both training and validation values shows a 
higher initial state for validation compared to the LSTM model. While the training process 
occurred, the model showed a peak at epoch 15. Moreover, Based on Table 3, the LSTM 
still outperforms the TKAN model. It also shows a better optimal result in MAE since the 
epoch for the LSTM is less than the TKAN model. 
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5. Conclusion 

In conclusion, the result shows that LSTM is better to use for prediction tasks rather 
than the TKAN model. This result occurred based on the architecture of LSTM having a 
forget gate while the TKAN model has only recurrent architecture at the final node of the 
model before output nodes. Hence, the LSTM model can be more suitable for the weather 
prediction. For further implementation, a hyperparameter tuning for the research needs 
to be implied to achieve a better performance for both models. Advanced pre-processing 
and data analysis also need to be implemented to avoid model overfitting.  
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