

Iota 2024, ISSN 2774-4353, Vol.04, 04; doi: 10.31763/iota.v4i4.828 https://pubs.ascee.org/index.php/iota

Research Article

Automating Internship Data Management Processes in a Web-Based
Application: A Case Study of FTI UNTAR

1,* Maria Rosa Gosal, 2 Wasino, 3 Tony

1,2 Department of Information Systems, Faculty of Information Technology, Universitas Tarumanagara, Jakarta, Indonesia

 * Corresponding Author: maria.825210014@stu.untar.ac.id

Abstract: The Faculty of Information Technology at Universitas Tarumanagara (FTI
UNTAR) supports the “Merdeka Belajar-Kampus Merdeka” (MBKM) industrial
internship program, providing students with valuable work experiences through
partnerships with companies and accessible internship listings. However, the existing
management system lacks comprehensive digital support, leaving many processes
manual and prone to inefficiencies, delays, and data errors. To address these challenges,
this paper presents the design of a web-based application that aims to streamline
internship data management by automating core processes and reducing administrative
overhead. The application leverages the iterative methodology within the Software
Development Life Cycle (SDLC), allowing for flexible adjustments and continuous
refinement through repeated cycles of development and testing. Following development,
the application successfully passed User Acceptance Testing (UAT) with all user types,
including students, faculty advisors, company mentors, and administrators.
Additionally, a System Usability Scale (SUS) survey conducted specifically for student
users resulted in an excellent final score of 90.42, graded as A+. This outcome confirms
the application’s effectiveness in enhancing operational accuracy and accessibility,
elevating the overall quality of internship management at the faculty.

Keywords: MBKM Industrial Internship, Data Management Automation, Web-Based

Application, Software Development Life Cycle, System Usability Scale.

1. Introduction
In today's rapidly evolving job market, employers increasingly value candidates who
possess not only theoretical knowledge but also practical, real-world experience. For
university students, gaining hands-on experience before graduation has become a
critical step toward securing employment and succeeding in their chosen careers.
This need has led many educational institutions and industries to promote internship
programs as a bridge between academic learning and the workplace. Recognizing
this shift, the Indonesian Ministry of Education, under the leadership of Nadiem
Makarim, launched the “Merdeka Belajar-Kampus Merdeka” (MBKM) initiative. One
key component of MBKM is the industrial internship program, which allows students
to immerse themselves in industry settings relevant to their studies [1]. This
experience enables students to acquire practical skills, build professional networks,
and gain insights into their prospective careers, which are essential for succeeding in
a competitive job market.

Universitas Tarumanagara, particularly its Faculty of Information Technology (FTI
UNTAR), has actively embraced all types of programs under the “Merdeka Belajar
Kampus Merdeka” (MBKM) initiative. Among these, the industrial internship
program stands out as one of the most popular and sought-after options, attracting
the majority of students [24]. FTI UNTAR demonstrates its commitment to MBKM
through strategic partnerships with numerous companies and by providing students

Citation: Gosal, M. R., & Wasino, T.

(2024). Automating internship data

management processes in a web-

based application: Study case: FTI

UNTAR. Iota, 4(4). ISSN 2774-4353.

https://doi.org/10.31763/iota.v4i4.82

7

Academic Editor : Adi, P.D.P

Received : Oktober, 13 2024

Accepted : November, 05 2024

Published : November, 26 2024

Publisher’s Note: ASCEE stays

neutral with regard to jurisdictional

claims in published maps and

institutional affiliations.

Copyright: © 2024 by authors.

Licensee ASCEE, Indonesia. This

article is an open access article

distributed under the terms and

conditions of the Creative Commons

Atribution Share Alike (CC BY SA)

license(https://creativecommons.org

/licenses/by-sa/4.0/)

https://pubs.ascee.org/index.php/iota/issue/archive
https://orcid.org/0000-0002-4284-6587

Iota 2024, ISSN 2774-4353, 04, 04 757/784

with access to relevant and impactful internship opportunities. The faculty’s
proactive approach not only focuses on securing placements but also on delivering a
well-rounded learning experience. This includes regular mentorship and constructive
feedback from industry professionals. By immersing students in real-world projects
and fostering active collaboration between academia and industry, FTI UNTAR aims
to prepare its graduates with the skills, expertise, and confidence required to excel in
their professional careers.

However, while the MBKM internship program provides valuable opportunities for
students, the current internship management system at FTI UNTAR faces significant
challenges due to its reliance on manual processes. The existing system has
limitations in covering the entire operational scope of the internship program, as it
lacks flexibility in accommodating varying internship durations, such as 6 months, 12
months, or extended internships. Furthermore, essential functions, such as
distributing internship information, creating logbooks, maintaining mentoring
attendance records, administering evaluation forms, and sending reminders to
mentors, are still managed through traditional methods. These manual procedures
not only slow down administrative operations but also increase the risk of human
error, leading to potential data inaccuracies. Additionally, the system struggles with
managing comprehensive mentoring data, including detailed records of each
student’s mentoring progress, which are crucial for monitoring performance and
ensuring accountability. These limitations are further compounded by the need to
efficiently handle large volumes of data, essential for tracking student progress,
recording evaluation metrics, and maintaining timely communication with all
stakeholders involved in the internship process [2].

To address these challenges, this study introduces a web-based application
specifically designed to streamline the management of industrial internships at FTI
UNTAR. This proposed system aims to replace the current manual processes with
automated workflows that minimize administrative burdens, reduce data entry
errors, and enhance the accessibility and accuracy of internship records. By
centralizing and digitalizing key tasks, the application will facilitate a more efficient
and organized approach to internship management. This digital transformation is
expected to benefit not only administrators and faculty supervisors but also the
students and company mentors involved in the MBKM program. Through this
application, FTI UNTAR seeks to create a more supportive and efficient environment
for its students, aligning with the broader objectives of the MBKM initiative.

2. Literature Review

In developing the MBKM data management application for industrial internships at
the Faculty of Information Technology, Universitas Tarumanagara, various studies
were used as references. Previous studies have highlighted the importance of
managing MBKM internship activities within educational institutions, but many
focus on broad systems for general program management rather than specialized
tools tailored for industrial internships. While some research centers on creating web-
based platforms, the approach to user roles and system capabilities varies widely. For
instance, some studies are limited to specific user roles, such as administrators and
students, while others focus on single-agency frameworks or lack scalability for
multi-stakeholder environments. These limitations often leave gaps in addressing the
unique needs of industrial internships, such as direct mentor evaluations, detailed
logbook management, or flexible tracking of mentoring attendance. A detailed
comparison of these studies, their limitations, and the novelty introduced by this
research is presented in Table 1, which highlights how this study addresses these gaps
by providing a more versatile and comprehensive solution tailored specifically for
MBKM industrial internships.

Iota 2024, ISSN 2774-4353, 04, 04 758/784

Table 1. State of the Art

Author(s)

and Year
Actors Scope Limitation Novelty of This Study

Sudargo

and Tony

[3]

Admin and

students

MBKM activities at FTI

UNTAR

Limited to admin and

students; does not support

specific internship needs

like evaluations by

mentors or supervisors.

Includes additional roles (faculty

advisors and company mentors) and

allows evaluations directly from

mentors. Focuses specifically on MBKM

industrial internships with more detailed

features tailored to internships.

Edy [4]

Admin,

students,

and faculty

advisors

Focused on students

interning in a

government agency

Limited to a single

government agency; lacks

scalability for multiple

partnerships and broader

academic needs.

Expands to handle multiple corporate

partners and academic stakeholders,

with features like logbooks, mentoring

attendance, and direct mentor

evaluations.

Marpaung

et al. [5]

Admin,

students,

and mentors

Focused on company-

level internship data

Restricted to a single-

company framework; not

designed for multi-

stakeholder environments

like universities.

Supports diverse partnerships and

includes features for both academic and

corporate collaboration in managing

internships.

Rumbang

and Tony

[25]

Admin and

intern

Focused on managing

attendance records and

intern employee data

at PT Sembilan Pilar

Semesta

Focused solely on

attendance; lacks broader

internship features

Offers mentorship tracking, logbooks,

and evaluations for a comprehensive

internship management solution

The system introduced in this study was designed to address the specific challenges
highlighted in previous research. By incorporating a broader range of user roles—
administrator, student, faculty advisor, and company mentor—the application
bridges gaps in existing solutions and ensures functionality that is directly aligned
with the needs of MBKM industrial internships. This approach not only supports
collaboration between academic institutions and multiple industry partners but also
enhances operational efficiency through streamlined data management and
communication tools. Furthermore, the integration of features like automated
evaluation processes, flexible internship tracking, and detailed mentoring oversight
demonstrates the system’s capability to provide a scalable and user-centric platform
tailored for industrial internships.

In addition to drawing insights from previous studies, having a comprehensive
understanding of specific theories is crucial to ensure that the system’s development
and implementation align seamlessly with the established requirements. These
theories serve as the foundational pillars that guide the application’s design and
functionality. Below are some key theoretical concepts that underpin the
development of the Web Application for MBKM Data Management in Industrial
Internships at FTI UNTAR.

Iota 2024, ISSN 2774-4353, 04, 04 759/784

2.1 Application
Applications are programs that are developed specifically to make it easier for users
to complete certain jobs, including data processing, analysis, and information
management [6]. With applications, various activities and tasks can be carried out
more efficiently and structured, following the objectives and functions desired by its
users.

2.2 Website
Elgamar describes a website as a digital platform made up of interlinked pages that
deliver information in diverse and dynamic forms [7]. This concept traces back to Tim
Berners-Lee, a British computer scientist credited with creating the world’s first
website. His innovation laid the foundation for the modern web, allowing for the
seamless sharing and access of information across interconnected pages.

2.3 The Merdeka Belajar-Kampus Merdeka (MBKM) program
The “Merdeka Belajar-Kampus Merdeka” (MBKM) program, initiated by Indonesia’s
Ministry of Education, aims to develop skilled human resources across the country
[8]. A key feature of MBKM is the flexibility it offers students, allowing them to take
courses outside their main study program for one semester and participate in
activities beyond campus for up to two semesters [9]. Universitas Tarumanagara
actively supports and implements the MBKM program, which includes activities
such as internships, teaching, research, humanitarian projects, entrepreneurship,
independent studies, community service in rural areas, and student exchange
programs. Figure 1 outlines the eight activity types within MBKM.

2.4 Industrial Internship

The industrial internship program within “Merdeka Belajar-Kampus Merdeka” (MBKM)
provides students with valuable hands-on experience in the professional world.
Through this program, students work as trainees at partner organizations for a
designated period, applying their academic knowledge in real-world contexts [10]. A
key benefit of the program is the opportunity for students to engage directly in an
institution’s internal operations, gaining practical insights that enrich their learning.
Furthermore, successful internships can lead to full-time employment offers,
significantly enhancing students’ job market prospects. Supported by collaborations
among the Ministry of Education, government agencies, and private companies, this
program serves as a crucial link between academic and professional spheres, helping
students build connections within their chosen industries [11].

Figure 1. Illustration of MBKM Program Activities [8]

Iota 2024, ISSN 2774-4353, 04, 04 760/784

2.5 Framework
A framework is a structured toolkit consisting of scripts, such as classes, functions,
and libraries, designed to streamline a developer’s work [12]. By using a framework,
application design and development become faster, as many code components are
pre-built and reusable. This reuse saves time and reduces redundant coding, allowing
developers to concentrate on crafting application logic and features. Consequently,
frameworks support more efficient and organized application development.

2.6 Database
Connolly and Begg describe a database as a logically connected collection of data
organized to meet an organization’s informational needs [13]. Beyond simply storing
data, a database is structured to manage and arrange data for fast and efficient access
[14]. This system facilitates essential data operations, such as storage, retrieval,
modification, and deletion, supporting a wide range of data processing activities [15].

2.7 Unified Modelling Language
The Unified Modelling Language (UML) is a standardized approach for creating
meaningful, object-oriented documentation models applicable to any real-world
software system [16]. UML enables the development of detailed and comprehensive
models that clearly and systematically illustrate the workings of both software and
hardware systems. To achieve this clarity, UML offers a range of diagrams that
visually represent different facets of a system.

2.8 User Acceptance Testing
User Acceptance Testing (UAT) is a process intended to verify that an application
meets the requirements and expectations of its end users. This testing emphasizes the
application’s ability to perform as expected in real-world scenarios, ensuring that all
functions align with the practical needs and workflows of users. Unlike other testing
stages that may delve into code or internal structure, UAT centers solely on the user
experience and functional accuracy from the perspective of intended usage [17].

2.9 System Usability Scale
The System Usability Scale (SUS) is a widely used standardized tool for assessing
users' perceptions of an application’s usability. Originally intended as a quick and
simple measure, SUS has proven effective in delivering a comprehensive view of
perceived usability without compromising measurement quality. Its relevance as a
usability metric is well-established due to its popularity and sustained use in both
research and practical usability assessments [18].

3. Method

In developing the MBKM data management application for industrial internships at
the Faculty of Information Technology, Universitas Tarumanagara, the methodology
used as a foundation is the System Development Life Cycle (SDLC). The SDLC offers
a structured approach for managing projects at the conceptual level, guiding the
progression from strategic planning to operational implementation [20]. This
methodology is designed to facilitate the development, deployment, maintenance,
and eventual decommissioning of information systems, following a well-defined set
of stages to ensure an organized and efficient project flow.

The SDLC includes several models, each suited to different project needs. For this
study, the iterative model was selected, as it emphasizes phased development that
incrementally builds upon a basic version of the system [21]. Unlike linear models,
the iterative approach does not require fully defined specifications from the outset.
Instead, development begins with initial components, which are tested and refined
based on feedback before proceeding to the next phase. Each iteration aims to
produce a functional part of the application, gradually shaping it into a complete
system. This cycle of repeated testing and refinement allows the project to adapt to
evolving requirements, making it an effective methodology for creating applications

Iota 2024, ISSN 2774-4353, 04, 04 761/784

that benefit from continuous improvement and real-time feedback, as illustrated in
Figure 2.

Figure 1. Illustration of the SDLC Iterative Model [19]

In the initial planning stage, initial planning is conducted to identify the general needs
of the system. This process usually involves gaining a preliminary understanding of
the project’s objectives and the system’s overall scope without detailing every specific
requirement. The focus is on establishing a foundational direction for development,
ensuring that all stakeholders share a common vision for the system's goals.
Following initial planning, planning is undertaken for each iteration, focusing on
specific plans for the features or modules to be developed in the current cycle. Each
iteration requires a thorough plan outlining the features to be implemented, including
task priorities, time estimates, and the necessary resources to achieve them.

After planning, the requirements stage involves detailed requirements gathering for
the first iteration. This process includes interviews, surveys, and observations to
identify both functional and non-functional requirements. The outcomes from this
phase lay the groundwork for creating an effective and efficient system architecture
that meets the needs of all stakeholders.

In the analysis and design phase, analysis and design are carried out based on the
requirements gathered for each iteration. The system is designed on a smaller scale
to allow flexibility for adding or modifying design elements in subsequent iterations.
This modular approach to design enables updates in later iterations based on any
evolving requirements or additional needs.

The Implementation stage in the iterative model is conducted in small units.
Developers code the features designed in the previous iteration and integrate them
into the system. This approach allows developers to focus on manageable portions of
the project, reducing the complexity of each implementation phase. As each unit is
completed and integrated, the system gradually evolves, making it easier to track
progress and identify any issues early in the development process.

Each iteration concludes with a Testing phase, where newly implemented modules
or features undergo a structured evaluation process. This phase ensures the system
operates as expected, minimizing errors and maintaining stability and performance
across iterations. Testing serves as a critical step in identifying potential issues before
deployment, validating both functionality and reliability for end users [17]. Beyond
identifying bugs, it also ensures that the application aligns with all specified
functional requirements. The testing process in this project was structured into four
levels: unit testing, integration testing, system testing, and User Acceptance Testing
(UAT). Figure 3 illustrates the hierarchy and flow of these testing levels within the
SDLC iterative model.

Iota 2024, ISSN 2774-4353, 04, 04 762/784

Figure 2. Levels of Testing [23]

The first three levels were performed by the developers to systematically verify that
individual modules (unit testing) functioned correctly, that these modules interacted
seamlessly with one another (integration testing), and that the overall system
performed as intended (system testing). The final stage, UAT, involved real users,
including students, faculty advisors, mentors, and administrators, testing the
application to ensure that it met their expectations and was ready for deployment in
live environments. For a clearer depiction of the testing processes carried out, refer to
the detailed flowchart presented in Figure 4.

Finally, after completing multiple iterations and achieving sufficient system stability,
the deployment phase takes place. In the Iterative Model, deployment can occur
gradually, allowing completed portions of the system to be released to end users
while additional features are developed in subsequent iterations. This staged
deployment strategy facilitates ongoing improvements while providing users access
to the most stable version of the system to date. The detailed activities within each
SDLC stage are presented comprehensively in Figure 5, which illustrates the block
diagram of the SDLC Iterative process for this study.

Figure 3. Detailed Flowchart of the Testing Processes. Source: Developed by this study.

Iota 2024, ISSN 2774-4353, 04, 04 763/784

Figure 4. Block Diagram of the SDLC Iterative Process. Source: Developed by this study.

4. Result and Discussion

This research resulted in a web-based application developed using the iterative SDLC
methodology. Through repeated cycles of planning, design, implementation, testing,
and evaluation, each iteration contributed to refining and enhancing the application
to meet the specific requirements of the MBKM industrial internship program at the
Faculty of Information Technology, Universitas Tarumanagara. This approach
allowed for continuous adjustments and improvements, ensuring that the final
application effectively addressed user needs and supported efficient data
management throughout the internship process. The following sections provide a
detailed explanation of the research results, organized according to each stage that
was undertaken.

4.1 Initial Planning
In the initial planning stage, a general identification of the objectives and scope for
the application to be developed is conducted. For the MBKM data management
application tailored to support industrial internships at the Faculty of Information
Technology, Universitas Tarumanagara, the author carried out observations on the
current internship system to gain a clear understanding of the fundamental needs for
the application design. This observational approach provided insight into existing
processes and highlighted essential features that the new application would need to
address, establishing a baseline for development.

4.2 Planning
In the subsequent planning phase, the author focused on planning for resources,
timelines, and potential risks associated with the development of each module. This
stage involved careful consideration of the tools and technologies required, estimated
durations for each development task, and an assessment of challenges that could arise
throughout the iterative cycles. By outlining these factors, a structured roadmap was
created to ensure efficient resource allocation and minimize disruptions, guiding the
project’s progression through each phase of development.

Iota 2024, ISSN 2774-4353, 04, 04 764/784

4.3 Requirements
In the requirements gathering stage, the author collected and identified detailed
requirements specific to the current iteration. This process involved conducting
interviews with a few lecturers at the Faculty of Information Technology, Universitas
Tarumanagara, which provided valuable insights into essential features needed for
the application. Key requirements identified included functionalities for managing
data related to students, faculty advisors, and company mentors, each critical for
effectively supporting the MBKM industrial internship program. These interviews
helped clarify the core elements of the system to meet user expectations and
operational needs. Any additional requirements or changes that arise will be
addressed in subsequent iterations, aligning with the application’s evolving
development and continuous refinement based on user feedback.

4.4 Analysis and Design
In the analysis and design stage, a comprehensive and structured design process was
executed to ensure the system's alignment with both functional and non-functional
requirements. Unified Modelling Language (UML) diagrams played a pivotal role in
representing the structure, behavior, and interactions within the system. UML
provides a standardized approach for modeling complex software systems, enabling
clear documentation of processes and interactions. Through the use of object-oriented
models, UML facilitates enhanced understanding and communication among
stakeholders, making it an essential tool for both developers and project managers
[22].

Among the UML diagrams developed, use case diagrams were extensively used to
capture and visualize the system's functional requirements from the perspectives of
different user roles. These diagrams delineate the interactions between actors—such
as students, faculty advisors, mentors, and administrators—and the system's
functionalities. Figures 6, 7, and 8 illustrate the use case diagrams for students, faculty
advisors company mentors, and administrators, respectively, showcasing the diverse
features tailored to each role. Students can manage their internship data, logbooks,
mentoring attendance, and reports, while also accessing vacancies and scores. Faculty
advisors and mentors focus on evaluating student performance, managing scores,
and monitoring mentoring sessions. Meanwhile, administrators oversee all aspects of
the system, including user accounts, vacancies, deadlines, and reporting. Together,
these diagrams provide a comprehensive representation of the system's scope,
ensuring that all user requirements are thoroughly addressed and streamlined.

Iota 2024, ISSN 2774-4353, 04, 04 765/784

Figure 5. Use Case Diagram for Student. Source: Developed by this study.

Figure 6. Use Case Diagram for Faculty Advisor and Company Mentor. Source: Developed by

this study.

Iota 2024, ISSN 2774-4353, 04, 04 766/784

Figure 7. Use Case Diagram for Administrator. Source: Developed by this study.

In addition to UML diagrams, the database design process involved the creation of a
detailed Entity-Relationship Diagram (ERD) at the logical level. The ERD was
essential for mapping out the relationships between different data entities, ensuring
efficient data organization, and supporting seamless access and management. Figure
9 presents the ERD for the industrial internship management system at the Faculty of
Information Technology, Universitas Tarumanagara. This ERD reflects the
integration of key system components, such as internship details, logbooks,
mentoring attendance, and evaluation records, into a cohesive database structure.

The ERD demonstrates how different entities—such as Students, Lecturers, Mentors,
Companies, and Vacancies—are interconnected to support core functionalities. For
instance, the Student_Internship_Log entity serves as a central hub for tracking
internship progress, linking students to their assigned mentors, vacancies, and
academic periods. Similarly, the Logbook, Guidance_Attendance, and
Internship_Report entities ensure that students’ daily activities, mentoring sessions,
and progress reports are properly recorded and easily accessible. Additionally, the
Score_Detail and Score_Category entities enable detailed evaluation of students’

Iota 2024, ISSN 2774-4353, 04, 04 767/784

performance by mentors and faculty advisors. The integration of the Deadline entity
ensures that critical dates, such as evaluation deadlines and academic period changes,
are systematically managed. The inclusion of status flags, such as is_active in entities
like Company and Lecturer, allows the system to maintain up-to-date records
without permanently removing data, preserving historical information for reference.

Figure 8. Logical Database Design. Source: Developed by this study.

Iota 2024, ISSN 2774-4353, 04, 04 768/784

4.5 Implementation
To develop the MBKM data management web application, a diverse set of tools and
technologies was employed to support both backend functionality and an intuitive
user interface. C# served as the primary programming language, integrated with
ASP.NET to build a dynamic, object-oriented application framework. Visual Studio
was selected as the main Integrated Development Environment (IDE) due to its
seamless integration with ASP.NET and advanced features that streamline code
development and debugging. For database management, SQL Server Management
Studio (SSMS) was utilized to ensure efficient data handling and support for the
complex relationships among entities as defined in the ERD. On the front end, HTML
and CSS established the structure and styling of the web pages, while JavaScript was
incorporated to add interactivity and responsiveness. To further enhance the design,
Bootstrap was used as a frontend framework, enabling the rapid development of a
responsive and user-friendly interface across various devices.

The following sections provide a detailed breakdown of the features developed to
expand and automate key components of the existing system, including the scope of
the internship program, distribution of internship information, logbook creation,
mentoring attendance tracking, mentor evaluation forms, and automated reminder
notifications.

4.5.1 Scope of Internship Program Duration
In the existing internship management system, data tracking is limited to students
who undertake a 6-month internship, restricting its flexibility and usability for
various internship scenarios. However, the internship program at the Faculty of
Information Technology, Universitas Tarumanagara, requires a more adaptable
approach, as students may also engage in 12-month internships or, in special cases,
may need to repeat their internships if they do not meet passing criteria. The newly
developed application addresses these limitations by allowing flexible configuration
of internship durations. Administrators can now set and track internships for 6
months, or 12 months, or even handle cases where students need to retake their
internships.

This enhanced functionality ensures that the application can comprehensively
support and manage all operational aspects of the internship program, meeting the
diverse needs of students and faculty. For example, in Figure 10, the "Student Detail"
page is shown, which can be accessed by the administrator for students undertaking
a 6-month internship. This page includes a "Student Internship History" table that
logs the student’s internship activities. In the table, it can be seen that the student was
initially registered in the system, then accepted for the internship and assigned a
faculty advisor. Finally, when the academic period is about to change, the system
automatically sets the student’s status to "Exit," indicating the internship has
concluded.

For students enrolled in a 12-month internship, as illustrated in Figure 11 the
workflow follows a similar process to the 6-month internship. However, a key
difference appears before the academic period changes. At this stage, the student’s
status is marked as "Extended," signifying that the first 6-month phase has been
completed and the internship will continue into the second 6-month period. Before
the next academic period change occurs, the system automatically updates the
student’s status to "Exit," indicating the conclusion of the 12-month internship. This
automation provides administrators with a clear and efficient process to manage
internships of varying durations, accommodating unique scenarios as needed. Below
is the pseudocode that outlines the logic implemented in the system to handle this
workflow efficiently.

Iota 2024, ISSN 2774-4353, 04, 04 769/784

START

FUNCTION UpdateInternshipStatus(studentId, academicPeriod)

 student = GetStudentDetails(studentId)

 IF academicPeriod.isEnding() THEN

 SWITCH student.duration

 CASE 6:

 UpdateStatus(studentId, "Exit")

 CASE 12:

 IF student.currentPhase == 1 THEN

 UpdateStatus(studentId, "Extended")

 IncrementPhase(studentId)

 ELSE

 UpdateStatus(studentId, "Exit")

 END IF

 CASE "Repeat":

 UpdateStatus(studentId, "Exit")

 END SWITCH

 END IF

END FUNCTION

FOR EACH student IN GetAllActiveInternships()

 UpdateInternshipStatus(student.id, GetCurrentAcademicPeriod())

END FOR

END

------------------------ Pseudocode 1 -------------------------

Figure 9. Student Detail Page for a 6-month Internship. Source: Screenshot from the developed

application.

Iota 2024, ISSN 2774-4353, 04, 04 770/784

Figure 10. Student Detail Page for a 12-month Internship. Source: Screenshot from the

developed application.

4.5.2 Distribution of Internship Information
In the current system, internship information distribution remains uncomputerized,
with opportunities being shared manually via Microsoft Teams or Instagram posts.
In the newly developed application, this process is centralized into a single platform,
allowing for streamlined management and access. Administrators can easily add
company information along with available internship positions, as shown in Figure
12, which displays the "Company" page, and Figure 13, which shows the "Vacancy"
page. In both sections, administrators can perform Create, Read, Update, and Delete
(CRUD) operations. These internship listings are then displayed on the student page
(see Figure 14), where students can filter internship opportunities according to their
needs, a feature that is unavailable in the current system. This centralized and
searchable platform simplifies operations and significantly enhances efficiency in
managing and accessing internship information. Below is the pseudocode that
outlines the workflow for managing and distributing internship information in the
newly developed application.

Iota 2024, ISSN 2774-4353, 04, 04 771/784

START

FUNCTION ManageInternship(action, data)

 SWITCH action

 CASE "Create":

 Add("Companies", data.companyDetails)

 Add("Vacancies", data.vacancyDetails, data.companyId)

 CASE "Read":

 RETURN GetAll("Companies"), GetAll("Vacancies")

 CASE "Update":

 Update("Companies", data.companyId, data.updatedDetails)

 Update("Vacancies", data.vacancyId, data.updatedDetails)

 CASE "Delete":

 Delete("Vacancies", data.vacancyId)

 IF CheckNoVacancies(data.companyId) THEN

 Delete("Companies", data.companyId)

 END IF

 END SWITCH

END FUNCTION

FUNCTION FilterVacancies(criteria)

 query = BuildQuery(criteria)

 RETURN ExecuteQuery(query)

END FUNCTION

FUNCTION Add(table, details, optionalId = NULL)

 ExecuteQuery("INSERT INTO " + table + " VALUES (?, ?)", details, optionalId)

END FUNCTION

FUNCTION Update(table, id, details)

 ExecuteQuery("UPDATE " + table + " SET details = ? WHERE id = ?", details, id)

END FUNCTION

FUNCTION Delete(table, id)

 ExecuteQuery("DELETE FROM " + table + " WHERE id = ?", id)

END FUNCTION

FUNCTION GetAll(table)

 RETURN ExecuteQuery("SELECT * FROM " + table)

END FUNCTION

FUNCTION CheckNoVacancies(companyId)

 RETURN ExecuteQuery("SELECT COUNT(*) FROM Vacancies WHERE companyId = ?", companyId) == 0

END FUNCTION

ADMIN_ACTION(action, data)

 CALL ManageInternship(action, data)

END ADMIN_ACTION

STUDENT_ACTION(criteria)

 DISPLAY FilterVacancies(criteria)

END STUDENT_ACTION

END

------------------------ Pseudocode 2 -------------------------

Iota 2024, ISSN 2774-4353, 04, 04 772/784

Figure 11. Company Management Page for Administrators. Source: Screenshot from the developed

application.

Figure 12. Vacancy Management Page for Administrators. Source: Screenshot from the developed

application.

Figure 13. Internship Listings Page for Students. Source: Screenshot from the developed

application.

Iota 2024, ISSN 2774-4353, 04, 04 773/784

4.6 Creating Logbooks
At the Faculty of Information Technology, Universitas Tarumanagara, students
participating in internships are required to create a logbook, which records their daily
activities from the start to the end of the internship. In the current system, students
must create this logbook entirely on their own, including setting up the template,
creating the table, and manually entering their data. In the newly developed
application, however, this process is fully computerized. As shown in Figure 15,
students simply click the "Add New Log" button, enter their activity details, and
submit the entry. Additionally, the logbook table can be downloaded in either Excel
or PDF format, offering flexibility based on the student's needs. Students can also edit
entries if they make a mistake or delete them if necessary, streamlining the logbook
creation process and ensuring ease of use. Below is the pseudocode that represents
the functionality for creating, editing, deleting, and downloading logbook entries
within the developed application.

START

FUNCTION AddLogEntry(studentId, date, activityDetails)

 INSERT INTO Logbook (studentId, date, activityDetails)

 VALUES (studentId, date, activityDetails)

END FUNCTION

FUNCTION EditLogEntry(logId, updatedDate, updatedActivityDetails)

 UPDATE Logbook

 SET date = updatedDate, activityDetails = updatedActivityDetails

 WHERE logId = logId

END FUNCTION

FUNCTION DeleteLogEntry(logId)

 DELETE FROM Logbook WHERE logId = logId

END FUNCTION

FUNCTION GetStudentLogEntries(studentId)

 RETURN ExecuteQuery("SELECT * FROM Logbook WHERE studentId = ?",

studentId)

END FUNCTION

FUNCTION DownloadLogbook(studentId, format)

 logEntries = GetStudentLogEntries(studentId)

 IF format == "Excel" THEN

 GenerateExcel(logEntries)

 ELSE IF format == "PDF" THEN

 GeneratePDF(logEntries)

 END IF

 RETURN DownloadFile()

END FUNCTION

STUDENT_ACTION(action, data)

 SWITCH action

 CASE "Add":

 CALL AddLogEntry(data.studentId, data.date, data.activityDetails)

 CASE "Edit":

 CALL EditLogEntry(data.logId, data.updatedDate,

data.updatedActivityDetails)

 CASE "Delete":

 CALL DeleteLogEntry(data.logId)

 CASE "Download":

 CALL DownloadLogbook(data.studentId, data.format)

 END SWITCH

END STUDENT_ACTION

END

------------------------ Pseudocode 3 -------------------------

Iota 2024, ISSN 2774-4353, 04, 04 774/784

Figure 14. Student Logbook Page. Source: Screenshot from the developed application.

4.7 Tracking Mentoring Attendances with Faculty Advisors

Similar to the logbook feature, this component records the mentoring sessions
conducted with faculty advisors throughout the internship. As shown in Figure 16,
students can log each mentoring session, creating a record of their interactions and
progress. These entries can also be downloaded in Excel or PDF format, providing
flexibility for reporting purposes. Additionally, faculty advisors have access to view
their students’ mentoring attendance records, as seen in Figure 17, allowing them to
monitor the frequency and consistency of mentoring sessions, ensuring effective
guidance and support during the internship. Below is the pseudocode that represents
the functionality implemented for tracking mentoring attendances.

START

FUNCTION LogMentoringSession(studentId, advisorId, sessionDetails)

 INSERT INTO MentoringSessions (studentId, advisorId, sessionDetails) VALUES

(studentId, advisorId, sessionDetails)

END FUNCTION

FUNCTION DownloadMentoringSessions(studentId, format)

 records = SELECT * FROM MentoringSessions WHERE studentId = studentId

 IF format == "Excel" THEN

 GenerateExcel(records)

 ELSE IF format == "PDF" THEN

 GeneratePDF(records)

 END IF

END FUNCTION

FUNCTION ViewMentoringRecords(advisorId)

 RETURN SELECT * FROM MentoringSessions WHERE advisorId = advisorId

END FUNCTION

STUDENT_ACTION(studentId, sessionDetails, format)

 LogMentoringSession(studentId, advisorId, sessionDetails)

 DownloadMentoringSessions(studentId, format)

END STUDENT_ACTION

ADVISOR_ACTION(advisorId)

 mentoringRecords = ViewMentoringRecords(advisorId)

 DISPLAY mentoringRecords

END ADVISOR_ACTION

END

------------------------ Pseudocode 4 -------------------------

Iota 2024, ISSN 2774-4353, 04, 04 775/784

Figure 15. Student Mentoring Attendance Page. Source: Screenshot from the developed

application.

Figure 16. Faculty Advisor Mentoring Attendance Page. Source: Screenshot from the developed

application.

4.8 Administering Evaluation Forms to Company Mentors

In the current system, administrators manually send student evaluation forms to company

mentors, which involves a complex and time-consuming process. First, administrators create a

spreadsheet where students fill in their mentor details, such as name, phone number, and email.

The administrator then emails the evaluation form individually to each mentor, a process prone

to inefficiencies and errors. To streamline this, the new application allows mentors to directly

access and submit evaluations for their interns. The workflow begins with students entering their

internship details, as shown in Figure 18. Once submitted, the mentor information provided by

students is automatically displayed on the administrator’s page, as illustrated in Figure 19. Here,

administrators can select the mentors to whom they wish to send login credentials by checking

the appropriate boxes and clicking the "Send User Credential to Email" button. Mentors then

receive an email with their account credentials, as shown in Figure 20. Once mentors receive

their login credentials, they can access their dedicated portal to submit evaluations for the

students they supervise. Figure 21 shows the "Company Mentor Evaluation Page," where

mentors can directly enter performance scores and feedback for each student. This streamlined

process not only saves time for administrators but also ensures that evaluations are

systematically recorded in one centralized platform, reducing the risk of errors and providing

easy access for administrators and faculty to review mentor feedback. Below is the pseudocode

for this feature.

Iota 2024, ISSN 2774-4353, 04, 04 776/784

Figure 17. Internship Detail Entry Page. Source: Screenshot from the developed application.

START

FUNCTION SubmitInternshipDetails(studentId, mentorName, mentorEmail,

internshipDetails)

 INSERT INTO InternshipDetails (studentId, mentorName, mentorEmail, details)

 VALUES (studentId, mentorName, mentorEmail, internshipDetails)

END FUNCTION

FUNCTION SendCredentialsToMentors(mentorIds)

 FOR EACH mentorId IN mentorIds

 mentorDetails = SELECT * FROM Mentors WHERE mentorId = mentorId

 credentials = GenerateCredentials(mentorId)

 emailContent = CreateCredentialEmail(mentorDetails.email, credentials)

 SendEmail(emailContent)

 UpdateMentorStatus(mentorId, "Credentials Sent")

 END FOR

END FUNCTION

FUNCTION SubmitMentorEvaluation(mentorId, studentId, performanceScore, feedback)

 INSERT INTO Evaluations (mentorId, studentId, performanceScore, feedback)

 VALUES (mentorId, studentId, performanceScore, feedback)

END FUNCTION

FUNCTION AdminAction(action, data)

 SWITCH action

 CASE "ViewMentorDetails":

 RETURN GetAllMentorDetails()

 CASE "SendCredentials":

 CALL SendCredentialsToMentors(data.mentorIds)

 END SWITCH

END FUNCTION

FUNCTION MentorAction(action, data)

 SWITCH action

 CASE "SubmitEvaluation":

 CALL SubmitMentorEvaluation(data.mentorId, data.studentId,

data.performanceScore, data.feedback)

 END SWITCH

END FUNCTION

FUNCTION ViewMentorEvaluations(adminId)

 evaluations = SELECT * FROM Evaluations WHERE adminId = adminId ORDER BY studentId

 RETURN evaluations

END FUNCTION

END

------------------------ Pseudocode 5 -------------------------

Iota 2024, ISSN 2774-4353, 04, 04 777/784

Figure 18. Administrator Mentor Management Page. Source: Screenshot from the developed

application.

Figure 19. Mentor Credential Email. Source: Developed by this study.

Figure 20. Company Mentor Evaluation Page. Source: Screenshot from the developed

application.

Iota 2024, ISSN 2774-4353, 04, 04 778/784

4.9 Automated Reminder Notifications to Company Mentors
In the current system, administrators manually remind company mentors to
complete student evaluations, which requires multiple steps and communication
through Microsoft Teams. Administrators typically post announcements asking
students who have not yet received evaluations to remind their mentors as the
deadline approaches. This process is time-consuming and inefficient, as it relies on
three parties—administrators reminding students, students reminding mentors, and
mentors finally completing the evaluations.

In the new application, automated reminders simplify this workflow significantly.
On the mentor dashboard, as shown in Figure 22, important dates—including the
evaluation submission deadline—are displayed to ensure mentors are aware of
upcoming deadlines. If mentors are not logged into the system, students are notified
on their "Intern Score" page, as seen in Figure 23, with an alert indicating that their
mentor has yet to submit their evaluation. This alert includes an option to send a
reminder directly to the mentor’s email. Once clicked, the system automatically sends
a notification to the mentor, prompting them to complete the evaluation, as illustrated
in Figure 24. This feature reduces the process from three parties to just two, allowing
students to directly prompt their mentors, saving time and improving efficiency in
managing evaluation deadlines. The following section presents the pseudocode that
outlines the implementation of this feature.

START

FUNCTION DisplayMentorDashboard(mentorId)

 importantDates = SELECT * FROM Deadlines WHERE mentorId = mentorId

 RETURN importantDates

END FUNCTION

FUNCTION CheckEvaluationStatus(studentId)

 evaluationStatus = SELECT status FROM Evaluations WHERE studentId =

studentId

 IF evaluationStatus == "Pending" THEN

 DISPLAY Alert("Mentor has not submitted the evaluation.")

 END IF

END FUNCTION

FUNCTION SendReminderToMentor(studentId, mentorId)

 IF IsReminderAllowed(studentId, mentorId) THEN

 mentorEmail = SELECT email FROM Mentors WHERE mentorId = mentorId

 emailContent = CreateReminderEmail(mentorEmail)

 SendEmail(emailContent)

 LogReminder(studentId, mentorId)

 ELSE

 DISPLAY Error("Cannot send another reminder now.")

 END IF

END FUNCTION

FUNCTION IsReminderAllowed(studentId, mentorId)

 lastReminderDate = SELECT lastSent FROM Reminders WHERE studentId =

studentId AND mentorId = mentorId

 currentDate = GET_CURRENT_DATE()

 IF currentDate >= lastReminderDate + 2 DAYS THEN

 RETURN TRUE

 ELSE

 RETURN FALSE

 END IF

END FUNCTION

Iota 2024, ISSN 2774-4353, 04, 04 779/784

STUDENT_ACTION(studentId)

 CALL CheckEvaluationStatus(studentId)

 IF UserClicksReminder THEN

 CALL SendReminderToMentor(studentId, mentorId)

 END IF

END STUDENT_ACTION

END

------------------------ Pseudocode 6 -------------------------

Figure 21. Mentor Dashboard Page. Source: Screenshot from the developed application.

Figure 22. Intern Score Page for Students. Source: Screenshot from the developed application.

Figure 23. Automated Reminder Notification to Mentor. Source: Developed by this study.

Iota 2024, ISSN 2774-4353, 04, 04 780/784

4.10 Testing
After completing the application design and coding, a thorough testing phase was
initiated to confirm the system’s quality and robustness.

4.10.1 Unit Testing
Unit testing is the initial stage in the testing process, where each unit or smallest
component of an application is tested independently to ensure it functions correctly.
A unit can be a function, procedure, or small module within the code. Unit testing is
conducted to identify bugs or errors at the most fundamental level [17]. This testing
is essential as it verifies that each part of the application works individually before
being integrated with other units.

4.10.2 Integration Testing
After completing the unit testing phase, the authors proceed with integration testing.
Integration testing is the stage where all units that have passed unit testing are
combined and tested to ensure they function correctly when working together. This
process helps identify any issues that may arise from interactions between different
units, which might not have been apparent during individual unit testing. By
thoroughly checking the integrated components, developers can verify that the
application meets compatibility and performance standards outlined in the
specifications, ensuring a smoother transition to subsequent testing phases [17].

4.10.3 System Testing
After all components are integrated, the application undergoes system testing, where
it is evaluated as a complete entity. This stage ensures that the application functions
according to the specified requirements and meets both functional and non-
functional criteria. System testing is only performed once all application components
have been successfully integrated, to validate that the entire system can fulfill the
needs and expectations outlined in the specifications [17]. At this phase,
comprehensive testing is conducted to observe how the application operates as a
unified system rather than as separate units or modules. This involves verifying the
entire application process flow, ensuring that each module interacts correctly, and
confirming that the application performs reliably under various operational
conditions. If the application passes system testing with satisfactory results, it is then
ready for User Acceptance Testing (UAT), where end users further validate it to
ensure it meets their needs.

4.10.4 User Acceptance Testing (UAT)
User Acceptance Testing (UAT) phase is the final step in the testing process before
the application is officially deployed. UAT is designed to ensure that the application
meets the needs and expectations of end users, focusing on its functionality as it
relates to real-world usage scenarios, without regard to the internal code or technical
implementation [17]. In this phase, four types of users participate according to their
roles within the application: students, mentors, faculty advisors, and administrators.
Each user role tests the application based on the specific functionalities required for
their responsibilities, ensuring that all features work as expected and support the
necessary processes for each role. Black box testing was used in this phase to assess
the application solely from an end-user perspective, focusing on inputs and outputs
rather than the internal workings of the code. Table 2 shows the results of black box
testing, specifically examining the features developed to expand and automate key
components of the existing system.

Iota 2024, ISSN 2774-4353, 04, 04 781/784

Table 1. Black Box Testing Result

Module Test Case Expected Result Status

Intern Program Duration

Status will be updated to indicate that the

student has completed the internship (for

students with 6-month internships or in

the second period of a 12-month

internship)

The status of the student changes to “Exit”

which indicates that the internship has

been completed.

Passed

Status will be updated to indicate that the

student has extended the internship (for

students in the first period of a 12-month

internship)

The status of the student changes to

“Extended” which indicates that the

internship has been completed.

Passed

Intern Info Distribution

Admin add a new company New company data will be saved Passed

Admin edit existing company Updated company data will be saved Passed

Admin delete existing company Company data will be deleted Passed

Admin add a new vacancy New vacancy data will be saved Passed

Admin edit existing vacancy Updated vacancy data will be saved Passed

Admin delete existing vacancy Selected vacancy data will be deleted Passed

Open the Vacancy page as student
Display vacancies data that have been

added by admin
Passed

Logbook

Add a new logbook data as student New logbook data will be saved Passed

Edit existing logbook data as student Updated logbook data will be saved Passed

Delete existing logbook data as student Selected logbook data will be deleted Passed

Download logbook as PDF or Excel Logbook data will be downloaded Passed

Mentoring Attendance

Add a new attendance data as student New attendance data will be saved Passed

Edit existing attendance data as student Updated attendance data will be saved Passed

Delete existing attendance data as student Selected attendance data will be deleted Passed

Download attendance as PDF or Excel Attendance data will be downloaded Passed

Students Assessment from

Company Mentors

Students add their internship detail data,

including mentor data

Internship data will be saved, mentor data

will be created
Passed

Admin opens Mentor Management page Shows a list of mentors added by students Passed

Admin select a few mentors to send their

account credential by email, then click the

send email button

Emails containing the company mentors’

account credential will be sent to selected

mentors

Passed

Mentor login using the credential that was

sent by email
Logins succeed Passed

Mentors give grades to the students their

supervise
Score will be saved Passed

Assessment Reminder to

Company Mentors

Open the intern score page for students

who have not received a score 7 days

before the mentor's scoring deadline.

A notification alert appears to remind the

mentor.
Passed

Iota 2024, ISSN 2774-4353, 04, 04 782/784

Module Test Case Expected Result Status

Students click “remind mentor”

An email reminder for submitting the

student's evaluation will be automatically

sent to the mentor.

Passed

The student clicks "remind mentor" again

right after just clicking it.

An error message will appear stating that

an email cannot be sent again right now, as

it was just sent recently, to prevent

spamming the mentor. Reminders can only

be sent 7 days, 5 days, 3 days, and 1 day

before the deadline.

Passed

After testing, particularly for the student role, the UAT process continued with the
completion of a System Usability Scale (SUS) questionnaire to evaluate the
application's ease of use. SUS is a widely used standardized tool for assessing users'
perceptions of an application's usability. Although initially designed as a quick and
straightforward scale, SUS has proven effective in providing a comprehensive view
of perceived usability without compromising measurement quality. Its relevance as
an assessment tool is well-established due to its popularity in usability research and
ongoing evaluation practices [18].
The questionnaire data was organized into a table to enable a more systematic
approach to calculating the SUS score (see Table 3). Scoring was carried out in line
with the established formula, with each response analyzed based on the respondent's
level of agreement with each statement. Once the calculations were completed, the
application achieved an average SUS score of 90.42. According to the SUS rating scale,
as shown in Table 4, this score falls within the A+ grade category, reflecting an
exceptionally high level of usability for the application. This outcome underscores the
application’s effectiveness in meeting user expectations for ease of use.

Table 2. Summary of SUS Questionnaire Data

Student
Question

Score Final Score
1 2 3 4 5 6 7 8 9 10

1 5 1 5 1 4 1 5 1 5 1 38 95

2 5 2 4 2 5 1 5 1 5 1 36 90

3 5 1 5 1 5 1 5 1 5 1 39 97.5

4 5 1 5 1 5 1 5 1 5 1 39 97.5

5 5 2 4 1 5 1 4 1 4 1 35 87.5

6 4 2 4 2 4 2 3 2 4 2 28 70

7 5 1 5 1 5 1 5 1 5 1 39 97.5

8 5 1 5 1 5 1 5 1 5 1 39 97.5

9 5 1 5 1 5 1 5 1 5 1 39 97.5

10 5 1 5 1 5 1 5 1 5 1 39 97.5

11 5 1 5 2 5 2 4 2 5 1 35 87.5

12 5 5 5 5 5 2 5 1 5 3 28 70

Average Score 90.42

Iota 2024, ISSN 2774-4353, 04, 04 783/784

Table 3. SUS Score Rating Scale Interpretation [26]

Letter grade Numerical score range

A+ 84.1 - 100

A 80.8 – 84.0

A- 78.9 – 80.7

B+ 77.2 – 78.8

B 74.1 – 77.1

B- 72.6 – 74.0

C+ 71.1 – 72.5

C 65.0 – 71.0

C- 62.7 – 64.9

D 51.7 – 62.6

F 0 – 51.6

5. Conclusion
This application has successfully computerized numerous processes that were previously
conducted manually, including managing the scope of the internship program,
distributing internship information, creating logbooks, tracking mentoring attendance,
handling mentor evaluation forms, and automating reminder notifications. By fully
digitizing these tasks, the application not only streamlines the management of student
participation data for industrial internships but also reduces the risk of recording errors
caused by human error. The application has been rigorously tested by four different user
types through a black box testing approach, with results confirming that all testing
scenarios were successfully met. Furthermore, a System Usability Scale (SUS)
questionnaire assessment yielded a final score of 90.42, placing the application in the A+
grade category and reflecting an exceptionally high level of usability.

Acknowledgments: The successful completion of this project was made possible through
the support and assistance of many individuals and organizations. Deep gratitude is
extended to the Faculty of Information Technology, Universitas Tarumanagara, for their
invaluable support throughout the development of this application. Their guidance,
resources, and insights contributed significantly to the successful execution of this project.
Special appreciation goes to the faculty advisors, administrators, students, and company
mentors who provided their expertise, feedback, and time, ensuring that the project
aligned with the needs and expectations of all users involved in the MBKM industrial
internship program.

Author contributions: The authors were responsible for building Conceptualization,
Methodology, analysis, investigation, data curation, writing—original draft preparation,
writing—review and editing, visualization, supervision of project administration,
funding acquisition, and have read and agreed to the published version of the
manuscript.

Funding: The study was conducted without any financial support from external sources.

Availability of data and Materials: All data are available from the authors.

Conflicts of Interest: The authors declare no conflict of interest.

Additional Information: No Additional Information from the authors.

Iota 2024, ISSN 2774-4353, 04, 04 784/784

References

1. Kemendikbud, "Mendikbudristek: Kampus Merdeka untuk Pembelajaran yang Lebih Menyenangkan dan Relevan,"

Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi, 6 October 2021. [Online]. Available:

https://www.kemdikbud.go.id/main/blog/2021/10/mendikbudristek-kampus-merdeka-untuk-pembelajaran-yang-lebih-

menyenangkan-dan-relevan. [Accessed 15 November 2024].

2. A. Haviz and M. I. P. Nasution, "Analisis Dampak Implementasi Sistem Informasi Manajemen Pada Efisiensi Proses Bisnis,"

Jurnal Ilmiah Ekonomi Dan Manajemen, 2024.

3. T. Sudargo and Tony, “Implementasi Framework Laravel Dalam Perancangan Website Manajemen Kegiatan MBKM Pada

IBIKFTI,” Journal of Information Technology and Computer Science (INTECOMS), 2023.

4. M. Edy, “Aplikasi Manajemen Data Anak Magang Berbasis Web pada Dinas Kebudayaan dan Pariwisata Kota Banjarmasin,”

Universitas Islam Kalimantan MAB, Banjarmasin, 2024.

5. P. H. Marpaung, N. Dahri dan W. Yahyan, “Sistem Informasi Pendataan Magang MBKM Berbasis Web,” Jurnal Manajemen

Teknologi Informatika, vol. 1, no. 2, pp. 109-116, 2023.

6. E. Turban, C. Pollard dan G. Wood, Information Technology for Management: On-Demand Strategies for Performance, Growth

and Sustainability, Australia and New Zealand Edition, United Kingdom: John Wiley & Sons, Limited, 2019.

7. Elgamar, Buku Ajar Konsep Dasar Pemrograman Website dengan PHP, Ahlimedia Book, 2020.

8. Admin Universitas Tarumanagara, “8 Program MBKM yang Dapat Diketahui Mahasiswa,” Universitas Tarumanagara, 5

December 2023. [Online]. Available: https://untar.ac.id/2023/12/05/8-program-mbkm-yang-dapat-diketahui-mahasiswa/.

[Accessed 15 November 2024].

9. Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi, “Apa itu Kampus Merdeka?,” Kementerian Pendidikan,

Kebudayaan, Riset, dan Teknologi, 2022. [Online]. Available: https://pusatinformasi.kampusmerdeka.kemdikbud.go.id/hc/en-

us/articles/4417185050777-Apa-itu-Kampus-Merdeka. [Diakses 21 Agustus 2024].

10. Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi, "Apa itu Program Magang & Studi Independen Bersertifikat?,"

Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi, 2022. [Online]. Available:

https://pusatinformasi.kampusmerdeka.kemdikbud.go.id/hc/en-us/articles/4416927940377-Apa-itu-Program-Magang-Studi-

Independen-Bersertifikat. [Accessed 15 November 2024].

11. Direktorat Jendral Pendidikan Tinggi, Riset, dan Teknologi, "Program MBKM Kemendikbudristek Membentuk Lulusan Siap

Industri melalui Magang Bersertifikat," Direktorat Jendral Pendidikan Tinggi, Riset, dan Teknologi Kementrian Pendidikan,

Kebudayaan, Riset, dan Teknologi, 27 November 2023. [Online]. Available: https://dikti.kemdikbud.go.id/kabar-

dikti/program-mbkm-kemendikbudristek-membentuk-lulusan-siap-industri-melalui-magang-bersertifikat/. [Accessed 15

November 2024].

12. Y. Yudhanto dan H. A. Prasetyo, Panduan Mudah Belajar Framework Laravel, Elex Media Komputindo, 2018.

13. T. M. Conolly dan C. E. Begg, Database Systems: A Practical Approach to Design, Implementation, and Management Sixth

Edition, United Kingdom: Pearson, 2015.

14. R. Fitri, Pemrograman Basis Data Menggunakan MySQL, Deepublish, 2022.

15. R. Yanto, Manajemen Basis Data Menggunakan Mysql, Yogyakarta: Deepublish, 2016.

16. A. Nordeen, Learn UML in 24 Hours, Guru99, 2020.

17. A. Nayyar, Instant Approach to Software Testing: Principles, Applications, Techniques, and Practices (English Edition),

Germany: Walter de Gruyter GmbH, 2019.

18. B. Blažica dan J. R. Lewis, “The System Usability Scale: Past, Present, and Future,” International Journal of Human-Computer

Interaction, vol. 34, no. 7, pp. 577-590, 2018.

19. Visual Paradigm, “What is a Software Process Model?,” Visual Paradigm, [Online]. Available: https://www.visual-

paradigm.com/guide/software-development-process/what-is-a-software-process-model/. [Accessed 15 November 2024].

20. J. T. Finnell dan B. E. Dixon, Clinical Informatics Study Guide: Text and Review, Switzerland: Springer Nature, 2022.

21. A. Kumaresan, S. Sivaprakash, V. P. dan C. Madhuri, A Textbook of Software Engineering, Academic Guru Publishing House,

2024.

22. S. Samsudin, N. Nurhalizah dan U. Fadilah, “Sistem Informasi Pendaftaran Magang Dinas Pemuda Dan Olahraga Provinsi

Sumatera Utara,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 4, no. 2, pp. 324-332, 2022.

23. D. Paspelava, “What is unit testing in software testing and why is it important?,” Exposit, 30 March 2023. [Online]. Available:

https://www.exposit.com/blog/what-unit-testing-software-testing-and-why-it-important/. [Accessed 15 November 2024].

24. J. Phang, M. Bagus and N. J. Perdana, "Analisis Capaian Program Merdeka Belajar Kampus Merdeka Menggunakan Metode

K-Means," Computatio: Journal of Computer Science and Information Systems,, pp. 172 - 183, 2024.

25. M. A. Rumbang and Tony, "Perancangan Aplikasi Presensi Berbasis Web untuk Karyawan Magang di PT. Sembilan Pilar

Semesta," Jurnal Ilmu Komputer dan Sistem Informasi, vol. 12, no. 2, 2024.

26. B. Klug, “An Overview of the System Usability Scale in Library Website and System Usability Testing,” Journal of Library User

Experience, vol. 1, no. 6, 2017.

