

Iota 2025, ISSN 2774-4353, Vol.05, 02; https://doi.org/10.31763/iota.v5i2.915 https://pubs.ascee.org/index.php/iota

Research Article

The Fabrique: A Pathfinding Algorithm in a Mobile Game Developed
Using Construct 3*
1,*Ruby Kusumawardhani, 2Diah Arifah Prastiningtiyas, 3Chaulina Alfianti Oktavia

1,2,3 Department of Informatics, Sekolah Tinggi Informatika & Komputer Indonesia, Indonesia

 * Corresponding Author: hi.rubywardhani@gmail.com

Abstract: The rapid growth of the digital game industry, particularly on mobile
platforms, has driven the development of algorithms to enhance gameplay quality and
player experience. The A* algorithm is a widely used pathfinding method for controlling
the movement of non-playable characters (NPCs) in games. This study aims to evaluate
the implementation of the A* algorithm in The Fabrique, a mobile game developed using
Construct 3, a 2D game development engine. Testing was conducted across various path
and obstacle scenarios. The results indicate that the A* algorithm delivers fast
computation time and optimal pathfinding for short-distance navigation. In the medium
to high obstacle scenarios, the algorithm maintained good performance with only
minimal increases in processing time. The implementation of the A* algorithm in The
Fabrique proved effective, contributing to a more dynamic and interactive gameplay
experience. With an average user satisfaction rate of 81.94%, the algorithm demonstrates
not only technical efficiency but also strong user acceptance.

Keywords: A-Star Algorithm, Construct 3, Pathfinding, NPC (Non-Playable Character),

Game Development.

1. Introduction

The development of the digital game industry has been ongoing since the 1950s and
continues to evolve today [1]. With advancements in mobile device technology, mobile-
based games have become increasingly popular, encouraging developers to create
engaging and interactive gaming experiences [2]. Algorithms play a critical role in game
development, serving as the foundation for various functions and mechanisms that
ensure smooth gameplay and enhance player experience [3].

Pathfinding methods are among the algorithms commonly used in game

development to manage the movement of non-playable characters (NPCs) [4]. The
primary objective of these methods is to determine the most efficient route to a target,
thereby contributing to more engaging and dynamic gameplay [5]. The A* algorithm is
one of the most widely used pathfinding algorithms, combining heuristic approaches and
graph search techniques to identify the shortest path [6].

The A* algorithm is selected for its strength in balancing pathfinding accuracy and

computational efficiency, particularly for mobile platforms with limited resources [7].
Compared to other algorithms such as Dijkstra or Breadth-First Search (BFS), A* offers
superior search efficiency while still maintaining optimal path accuracy [8][9]. Other
artificial intelligence algorithms, such as Naive Bayes, have also been applied in decision-
making systems within information technology, highlighting the importance of selecting
algorithms that align with system requirements [10]. Furthermore, A* supports dynamic
NPC movement in complex and variable environments, making it well-suited for games
featuring diverse levels and obstacles [11].

Citation: Kusumawardhani, R.,

Prastiningtiyas, D. A., & Oktavia, C.

A. (2025). The Fabrique: A

Pathfinding Algorithm in a Mobile

Game Developed Using Construct

3. Iota, 5(2).

https://doi.org/10.31763/iota.v5i2.91

5

Academic Editor: Adi, P.D.P

Received: April 06, 2025

Accepted: April 17, 2025

Published: May 12, 2025

Publisher’s Note: ASCEE stays

neutral about jurisdictional claims in

published maps and institutional

affiliations.

Copyright: © 2025 by authors.

Licensee ASCEE, Indonesia. This

article is an open-access article

distributed under the terms and

conditions of the Creative Commons

Attribution-Share Alike (CC BY SA)

license(https://creativecommons.org

/licenses/by-sa/4.0/)

https://pubs.ascee.org/index.php/iota/issue/archive

Iota 2025, ISSN 2774-4353, 05, 02 309 of 322

Construct 3 is a 2D game development engine that enables rapid and user-friendly
game creation without requiring extensive programming knowledge [12]. The platform
offers a range of features, including a visual editor, animation support, vector graphics,
easy asset management, and compatibility with mobile-based game development [13].

In the first quarter of 2023, the gaming industry demonstrated significant growth,

with global players spending approximately USD 1.64 billion and downloading nearly
1.2 billion games each week [14]. The mobile gaming sector continues to thrive due to its
high accessibility, presenting developers with new opportunities to reach wider
audiences and drive innovation [15]. Moreover, other intelligent computing methods,
such as the Fuzzy Sugeno algorithm, have been used in hardware selection decision-
making, illustrating the flexibility of such approaches in various contexts—including
potential applications in game logic [16].

This study focuses on the development of an RPG (Role-Playing Game) genre game

that enables freedom of movement and exploration [17]. The game, titled The Fabrique,
follows the story of the main character, Brow Lee, who explores the capital city after
completing his education. In the game, the player must guide the character to a
destination while avoiding proximity or contact with NPCs, utilizing the A* pathfinding
algorithm [2].

The objective of this study is to evaluate the A* pathfinding method in the

development of The Fabrique [5]. The focus is on the implementation of the algorithm for
path detection toward a target, emphasizing optimal decision-making in dynamic
environments by incorporating various criteria [18]. The study aims to strengthen the
foundational research on game development involving dynamic and interactive NPC
movement [1]. The novelty of this study lies in the application of the A* algorithm in a
mobile-based RPG game developed using Construct 3—an engine that has not been
widely explored in the context of pathfinding [12][13]. Previous studies have
predominantly utilized Unity or desktop platforms [5], thus this research contributes to
the expansion of heuristic pathfinding implementation in mobile gaming environments
with constrained resources [11].

2. Literature Review

This section reviews the theoretical and empirical foundations underlying the
development of The Fabrique, particularly the implementation of the A* pathfinding
algorithm to support Non-Playable Character (NPC) behavior in a Construct 3-based
game. The review focuses on three main aspects: pathfinding algorithms in-game
navigation systems, game development technology using Construct 3, and the challenges
and advantages of applying artificial intelligence (AI) in mobile-based games. The
purpose of this discussion is to contextualize the significance of integrating intelligent
algorithms with visual interfaces in modern game development, to enhance efficiency,
engagement, and overall user experience.

2.1 Pathfinding

Pathfinding refers to the process of determining the shortest path between two points
in a defined space. In the context of games, this algorithm is utilized to enable NPCs to
navigate the game environment in a logical and goal-oriented manner. The A* (A-Star)
algorithm is among the most widely adopted pathfinding techniques due to its efficiency
in identifying optimal paths, based on the evaluation function f(n) = g(n) + h(n), where g(n)
denotes the actual cost from the start node and h(n) represents the estimated cost to the
goal node [18][19].

Iota 2025, ISSN 2774-4353, 05, 02 310 of 322

2.1.1 Comparison of Pathfinding Algorithms
The choice of pathfinding algorithm significantly impacts the performance of NPC

navigation, especially on mobile platforms with limited computational resources.
Commonly used algorithms include Breadth-First Search (BFS), Dijkstra’s algorithm, and
A*. The A* algorithm is particularly noted for its efficiency, as it combines the exhaustive
nature of Dijkstra’s algorithm with heuristic guidance that accelerates the search process
[8].

Compared to Dijkstra’s algorithm, A* offers superior performance in real-time game

scenarios, as it selectively evaluates promising nodes based on the f(n) function, rather
than exhaustively examining all possibilities. A study by Wu et al. (2020) demonstrated
that A* achieved up to 30% greater time efficiency than Dijkstra’s algorithm in grid-based
NPC navigation simulations [18]. Meanwhile, BFS, being an uninformed algorithm,
explores all potential paths indiscriminately without regard to distance or cost, making it
less efficient in complex game environments [8]. Algorithms lacking structured
pathfinding—such as those using random or static movement—are generally unable to
respond to dynamic environments, resulting in non-adaptive NPCs and diminished
gameplay quality [3]. This adaptability makes A* particularly well-suited for scenarios
where responsiveness and efficiency are critical, such as in fast-paced, dynamically
changing game worlds.

Table 1. Comparison of Pathfinding Algorithms

Algorithm Optimal Path Heuristic Time Efficiency Advantages Limitations

A* Yes Yes High
Fast, accurate,

adaptive

Requires well-designed

heuristic

Dijkstra Yes No Moderate
Always find the

optimal path

Explores all nodes,

slower in large maps

BFS
Yes (in unweighted

graphs)
No Low

Simple to

implement

Inefficient in large or

weighted graphs

No Algorithm No No Very Low
Easiest to

implement

Random or unrealistic

NPC behavior

Accordingly, the A* algorithm was selected for The Fabrique due to its optimal balance
between accuracy and efficiency, particularly suited for mobile platforms with limited
resources [6].

2.2 Non-Playable Character (NPC)

Non-playable characters (NPCs) refer to game characters controlled by the system
rather than by players. These characters often serve narrative roles, vendors, enemies, or
quest-givers. NPCs enhance the depth and complexity of the game world by offering
diverse interactions to players. Their presence is essential for enabling meaningful
exchanges between the player character and other game entities, thereby contributing to
a more immersive gameplay experience [1].

2.3 Construct 3

Construct 3 is a browser-based game engine that utilizes a visual programming
system through event sheets. It supports the integration of plugins such as Pathfinding
Behavior and Line of Sight, allowing developers to implement automatic navigation and
player detection without traditional coding [12]. Moreover, Construct 3 enables direct
export to mobile platforms and provides an asset library to accelerate the development

Iota 2025, ISSN 2774-4353, 05, 02 311 of 322

process. The use of such visual engines is especially beneficial for novice developers
aiming to focus on game logic without being burdened by programming complexity.

2.4 Artificial Intelligence

The implementation of artificial intelligence, particularly in the form of pathfinding
for NPCs, poses several technical challenges, including tilemap configuration, obstacle
avoidance, and real-time path computation optimization [6]. Nonetheless, the benefits are
considerable, including enhanced gameplay quality, more immersive player interactions,
and balanced game difficulty levels. Empirical evidence suggests that games
incorporating A*-based AI-driven NPCs experience improved user retention. In the
context of The Fabrique, such implementation facilitates new challenges and contributes to
delivering a more realistic and engaging user experience [20].

3. Conceptual Framework
This section outlines the conceptual framework of The Fabrique, a game that

incorporates the A* pathfinding algorithm to regulate the movement of non-playable
characters (NPCs). The framework is designed to address both technical and operational
aspects in the development of an intelligent NPC system capable of navigating the game
environment efficiently and responsively. The discussion encompasses the game system
architecture, the logic of the A* algorithm, the interaction mechanisms between NPCs, the
environment, and the player, as well as visual implementation using Construct 3. This
provides a structured approach to understanding how pathfinding logic is applied within
a visual game engine and how the system operates in the context of mobile-based
gameplay.

3.1 System Design

3.1.1 Global Scheme

The global scheme describes the overall system structure, including tilemap layout,
initial NPC positions, navigation paths, and player interaction points. The game is
developed using Construct 3, a platform that supports the integration of visual
components such as Pathfinding Behavior and Line of Sight. Each level is designed with
varied obstacles that influence the optimal navigation paths available to NPCs, ensuring
that pursuit behaviors can dynamically adapt to player movements.

Figure 1. Use Case Diagram

3.2 System Architecture

The system architecture includes the configuration of the event sheet, instance variables,
and condition-based logic systems. These components govern the transition of NPC states
from passive to active (chase mode). The evaluation of the function f(n) = g(n) + h(n) is
executed via the Pathfinding Behavior, which automatically assesses the most promising
nodes until the target is reached. The system also utilizes tilemap obstacles as parameters
to define navigable and non-navigable areas for the NPCs.

Iota 2025, ISSN 2774-4353, 05, 02 312 of 322

Figure 2. A* Algorithm Flowchart

3.3 Intelligent Interaction Model
The NPC remains in a random movement pattern when the player is not detected by

the visual system (Line of Sight). However, once the player enters the detection radius
without being obstructed by environmental obstacles, the NPC automatically calculates
the shortest path to the player’s position using the A* algorithm. The behavioral state
transitions are regulated by the event sheet, which evaluates object distance parameters
and visual status conditions. This model is designed to enable rapid and adaptive NPC
responses to changes in player positioning.

Iota 2025, ISSN 2774-4353, 05, 02 313 of 322

Figure 3. NPC Flowchart

3.4 Realtime Monitoring
Throughout gameplay, the system records data such as NPC travel time to the player,

the number of nodes traversed, and the effectiveness of selected paths across different
levels. Data collection is conducted manually via direct observation and debugging logs
from Construct 3. This information is utilized to assess the effectiveness of the A*
algorithm’s integration of level design complexity and navigation demands.

4. Technical Specification
The technical specifications for The Fabrique game are developed using Construct 3,

with a primary focus on the application of the A* pathfinding algorithm, the structure of
game assets, and the performance of NPC logic during gameplay. These specifications
aim to explain how the technical design supports the dynamic behavior of NPC
characters, creating an immersive and adaptive gameplay experience. Additionally, the
event-driven system implemented allows NPCs to respond to various game conditions in
real time. This approach not only enhances interaction flexibility but also strengthens the
overall interactive narrative of the game.

4.1 Event Sheet Implementation

The movement logic of NPCs is controlled through the event sheet in Construct 3. In
the initial state, NPCs move randomly when the player is not detected. Once the player
enters the detection area defined by the Line of Sight feature, the A* pathfinding algorithm
is activated to calculate the shortest path to the player's location.

Iota 2025, ISSN 2774-4353, 05, 02 314 of 322

Figure 4. NPC Event Sheet

The A* algorithm uses the formula as the equation 1.

f(n) = g(n) + h(n) (1)

g(n) = actual distance traveled from the starting point

h(n) = estimated distance to the target

f(n) = total path cost

The system automatically updates the path when the player’s position changes, ensuring that NPCs

always follow the most efficient route. This process is visualized through a flowchart of the A*

algorithm, which illustrates the node selection steps and the NPC movement direction in real time.

4.2 Game Assets

Figure 5. Main Menu Interface

The structure of game assets includes the main menu interface, the gameplay screen,
and conditions when interactions between NPCs and players occur. The initial game
interface is simple and intuitive, allowing players to easily navigate to the level selection
screen. This layout ensures accessibility for users of all experience levels, enhancing the
overall user onboarding process.

Iota 2025, ISSN 2774-4353, 05, 02 315 of 322

Figure 6. Gameplay Interface

This screen shows the gameplay situation when the player is not yet detected by the
NPC. In this condition, the NPC moves randomly according to the logic defined in the
event sheet. This stage is important for testing the difference in NPC behavior when the
A* pathfinding algorithm is not activated, compared to when the NPC begins to chase the
player. Such baseline behavior provides a clear contrast to demonstrate the effectiveness
of intelligent pathfinding when detection occurs.

Figure 7. NPC Search Interface

Once the player enters the line of sight radius, the A* pathfinding algorithm is
activated, and the NPC begins actively chasing the player. This display shows the
dynamic interaction supported by the intelligent navigation system based on the
algorithm, which is optimally implemented on the mobile platform via Construct 3. The
transition highlights the algorithm’s capability to adapt in real time to player movements
within complex environments.

Iota 2025, ISSN 2774-4353, 05, 02 316 of 322

Figure 8. NPC Detection Interface

Once the player enters the line of sight radius, the A* pathfinding algorithm is
activated, and the NPC begins actively chasing the player. This display shows the
dynamic interaction supported by the intelligent navigation system based on the
algorithm, which is optimally implemented on the mobile platform via Construct 3. This
implementation exemplifies the smooth integration of AI navigation with mobile game
mechanics for immersive gameplay.

Figure 9. Map Simulation

The game map consists of a 13×25 grid, used as a simulation for NPC movement
relative to the player’s position. Each grid unit represents a navigation unit in the A*
algorithm, enabling systematic testing of the chase and avoidance logic. This structured
layout also facilitates debugging and performance optimization during development.

Iota 2025, ISSN 2774-4353, 05, 02 317 of 322

4.3 Testing

4.3.1 Functional Testing

Functional testing is conducted to verify that each component of The Fabrique game
operates as intended. Each component is tested with two possible outcomes: success or
failure.

Table 2. Functional Testing

No Test Component Testing Notes

1 Splash Screen Displays the Fabrique logo splash screen Successful

2 Main menu
Displays menu buttons, information, and play

button
Successful

3 Information Menu Displays game instructions Successful

4 Settings Menu Displays mute and unmute audio buttons Successful

5 Main Character Displays Brow Lee's character Successful

6 NPC Character Displays Preman and Senior characters Successful

7 Level 1 Displays level 1 map leading to the dormitory Successful

8 Level 2 Displays level 2 map leading to the workplace Successful

9 Level 3 Displays level 3 map leading to the boss's room Successful

10 Level 4 Displays level 4 map leading back to the dormitory Successful

11 Level 5 Displays level 5 map leading to the police station Successful

12 Win Layout Displays win layout screen Successful

13 Lose Layout Displays lose layout screen Successful

4.4 NPC Behavior Testing

NPC behavior testing aims to evaluate the detection capabilities and response of
NPCs to the player's presence. The initial detection system has a radius of 74 pixels,
forming a full circle (360 degrees). The NPC will chase the player if the player's position
is within the detection radius (≤ 74 px) and return to patrolling mode if the player's
position is outside this radius (> 74 px). If the player's position coincides with the NPC’s
position (x = x_NPC, y = y_NPC), the status is considered "caught."

Moreover, to test the sensitivity of the system, the detection radius is increased by 20
pixels at each subsequent test level.

Table 3. NPC Behavior Testing

Experiment State Condition Action Notes

1

Patrolling Player (x,y) ≤ NPC (20,20) Chasing Successful

Chasing Player (x,y) > NPC (20,20) Patrolling Successful

Chasing Player (x,y) = NPC (20,20) Caught Successful

2

Patrolling Player (x,y) ≤ NPC (40,40) Chasing Successful

Chasing Player (x,y) > NPC (40,40) Patrolling Successful

Chasing Player (x,y) = NPC (40,40) Caught Successful

3

Patrolling Player (x,y) ≤ NPC (60,60) Chasing Successful

Chasing Player (x,y) > NPC (60,60) Patrolling Successful

Chasing Player (x,y) = NPC (60,60) Caught Successful

4 Patrolling Player (x,y) ≤ NPC (80,80) Chasing Successful

Iota 2025, ISSN 2774-4353, 05, 02 318 of 322

Experiment State Condition Action Notes

Chasing Player (x,y) > NPC (80,80) Patrolling Successful

Chasing Player (x,y) = NPC (80,80) Caught Successful

5

Patrolling Player (x,y) ≤ NPC (100,100) Chasing Successful

Chasing Player (x,y) > NPC (100,100) Patrolling Successful

Chasing Player (x,y) = NPC (100,100) Caught Successful

4.5 A Pathfinding Testing*

This testing aims to evaluate the effectiveness and efficiency of the A* algorithm in
various map scenarios, including conditions with short paths, and long paths, as well as
maps with simple to complex obstacles. The parameters tested include the number of
nodes explored (open list), the number of paths found, and computation time.

Table 4. A* Pathfinding Testing

Level Type of Obstacle Trial Start (x,y) Goal (x,y)
Open

 list
Path Time

1 Short Path

3 (418,571) (91,740) 3 2 8 s

1 (418,571) (91,740) 3 2 15 s

2 (418,571) (91,740) 5 4 26 s

2 Long Path

1 (626,243) (91,740) 2 3 18 s

2 (626,243) (91,740) 2 4 21 s

3 (626,243) (91,740) 2 7 34 s

3 Simple Obstacles

3 (412,200) (123,710) 6 3 15 s

1 (412,200) (123,710) 3 3 18 s

2 (412,200) (123,710) 7 6 30 s

4 Moderate Obstacles

2 (297,73) (91,740) 9 3 14 s

3 (297,73) (91,740) 6 4 24 s

1 (297,73) (91,740) 5 5 25 s

5 Multi-Agent

2 (116,306), (582, 308) (91,740) 2 2 8 s

3 (116,306), (582, 308) (91,740) 2 2 9 s

1 (116,306), (582, 308) (91,740) 2 2 10 s

The results demonstrate that the A* algorithm is capable of generating optimal paths
with an average computation time ranging from 5 to 9 seconds per search, at a maximum
movement speed of 60 pixels/second.

4.6 User Experience Evaluation
A total of 30 participants took part in the user experience (UX) testing by responding

to 12 statements related to game usability and functionality. Respondents rated each
statement using the following scale:

1 = Strongly Disagree (SD)

2 = Disagree (D)

3 = Agree (A)

4 = Strongly Agree (SA)

Iota 2025, ISSN 2774-4353, 05, 02 319 of 322

Table 5. Questionnaire Statements

No Statement

1 The main menu page is easy to understand

2 The level pages are distinguishable.

3 The information provided is easy to comprehend

4 The gangster NPC can follow the player accurately.

5 The senior NPC can follow the player accurately.

6 Level 1 is playable without issues.

7 Level 2 is playable without issues.

8 Level 3 is playable without issues.

9 Level 4 is playable without issues.

10 Level 5 is playable without issues.

11 The player's movement speed is appropriate.

12 The game is extremely difficult to play.

Moreover, the Score Calculation Formula is shown in Equation 2.

𝑌 = (
∑ 𝑁.𝑅

𝐼𝑑𝑒𝑎𝑙 𝑆𝑐𝑜𝑟𝑒𝑠
) x 100 % (2)

Where:
N = Rating scale (1–4)
R = Number of respondents selecting a particular scale value
Σ = Summation
Skor Ideal = Total number of respondents × highest score

Table 6. Respondents’ Questionnaire Results

No Criterion N R N.R Σ(N.R) Ideal Score Y

1

SD 1 0 0

97 120 80,83%
D 2 1 2

A 3 21 63

SA 4 8 32

2

SD 1 0 0

99 120 82,5%
D 2 1 2

A 3 19 57

SA 4 10 40

3

SD 1 0 0

99 120 82,5%
D 2 2 4

A 3 17 51

SA 4 11 44

4

SD 1 0 0

99 120 82,5%
D 2 2 4

A 3 17 51

SA 4 11 44

5

SD 1 0 0

98 120 81,67%
D 2 2 4

A 3 22 66

SA 4 7 28

6

SD 1 0 0

100 120 83,33%
D 2 2 4

A 3 16 48

SA 4 12 48

7

SD 1 0 0

101 120 84,17%
D 2 0 0

A 3 19 57

SA 4 11 44

Iota 2025, ISSN 2774-4353, 05, 02 320 of 322

No Criterion N R N.R Σ(N.R) Ideal Score Y

8

SD 1 0 0

100 120 83,33%
D 2 1 2

A 3 18 54

SA 4 11 44

9

SD 1 0 0

97 120 80,83%
D 2 1 2

A 3 21 63

SA 4 8 32

10

SD 1 0 0

100 120 83,33%
D 2 1 2

A 3 18 54

SA 4 11 44

11

SD 1 0 0

95 120 79,17%
D 2 5 10

A 3 15 45

SA 4 10 40

12

SD 4 13 52

95 120 79,17%
D 3 10 30

A 2 6 12

SA 1 1 1

Based on the results of the questionnaire distributed to 30 respondents consisting of
12 statements, the percentage for each statement was obtained. Subsequently, the overall
average was calculated by summing the percentage of each statement and dividing it by
the total number of statements. The calculation result showed an average of 81.94%. The
following is the graph of the A* Pathfinding testing using five types of obstacles with
different levels of difficulty.

Figure 10. A Pathfinding Testing Graph*

In the condition of a short path without obstacles, such as at the blue point, the A*
Pathfinding algorithm showed low computation time, ranging from 8–15 seconds, with a
total of 2 paths in Level 1 and 3, and 4 in Level 2. Meanwhile, under longer path conditions
(green point), the computation time increased to 34 seconds with 7 paths in Level 3, 4 in
Level 2, and 3 in Level 1.

Iota 2025, ISSN 2774-4353, 05, 02 321 of 322

In conditions with simple obstacles (redpoint), computation time ranged from 14–30
seconds with a total of 3 paths in Level 1 and 3, and 6 in Level 2. Meanwhile, in medium-
obstacle conditions (purple point), this algorithm recorded a time between 14–25 seconds
with 5 paths in Level 1, 3 in Level 2, and 4 in Level 3. In multi-agent path conditions,
computation time was relatively low, i.e., 8–10 seconds, with the same number of paths,
2, at all levels. Although there was an increase in computation time in more complex
paths, the performance of the A* Pathfinding algorithm remained optimal and within
reasonable limits.

5. Conclusions
Based on the results of testing and analysis, the implementation of the A* Pathfinding

algorithm in the game The Fabrique showed good performance in various scenarios. In
short paths without obstacles, the computation time ranged from 8–15 seconds with 2–4
paths, while in long paths, the computation time could reach up to 34 seconds with 3–7
paths. In simple obstacles, the algorithm showed a computation time of 14–30 seconds
with 3–6 paths, and in medium obstacles, the computation time was 14–25 seconds with
3–5 paths. In multi-agent scenarios, computation time was stable at around 8–10 seconds
with a consistent number of 2 paths. Overall, the A* Pathfinding algorithm has been tested
and has demonstrated good performance in various conditions and level scenarios. With
an average user satisfaction of 81.94%, the algorithm is not only technically efficient but
also well-received by users.

As a follow-up to this research, several developments can be carried out in the future.
One of them is to apply the Pathfinding algorithm to more complex game scenarios, such
as environments with non-grid maps or dynamically designed levels. Further research
can also explore the integration of the A* algorithm with other approaches, such as
machine learning, to produce NPC behavior that is more adaptive to changing game
situations. In addition, the developed navigation system can be tested in multiplayer
game modes or in difficulty-level designs that adjust to the player's abilities. With these
developments, the pathfinding system is expected to provide a more realistic and
challenging gaming experience.

Acknowledgments: This research was conducted by Informatics Study Program students as part

of the Final Project, with the support of the Sekolah Tinggi Informatika dan Komputer Indonesia

and under the guidance of Ms. Diah Arifah Prastiningtiyas, S.Kom., M.T., and Ms. Chaulina Alfianti

Oktavia, S.Kom., M.T. This research is part of an academic activity fully supported by the institution

in completing the undergraduate degree.

Author contributions: The authors are responsible for building Conceptualization, Methodology,

analysis, investigation, data curation, writing—original draft preparation, writing—review and

editing, visualization, supervision of project administration, funding acquisition, and have read and

agreed to the published version of the manuscript.

Funding: The study was conducted without any financial support from external sources.

Availability of data and Materials: All data are available from the authors.

Conflicts of Interest: The authors declare no conflict of interest.

Additional Information: No Additional Information from the authors.

Iota 2025, ISSN 2774-4353, 05, 02 322 of 322

References
[1] Kay, M., & Powley, E. J. (2018, August). The effect of visualising NPC pathfinding on player exploration. In Proceedings of the

13th international conference on the foundations of digital games (pp. 1-6).

[2] Octavian, F., & Hermawan, L. (2023). Penerapan Algoritma Pathfinding A* dalam Game Dual Legacy berbasis Android. Jurnal

Buana Informatika, 14(01), 20-29.

[3] Mutaqin, G., Fadilah, J. N., & Nugroho, F. (2021). Implementasi Metode Path Finding dengan Penerapan Algoritma A-Star

untuk Mencari Jalur Terpendek pada Game “Jumrah Launch Story”.

[4] Junanto, E., Osmond, A. B., & Ansori, A. S. R. (2020). Membuat Pergerakan Non-Player Character (Npc) Menggunakan Metode

A Star. eProceedings of Engineering, 7(1).

[5] Agung, E. (2022). Implementasi metode pathfinding dengan algoritma a* pada game rogue-like menggunakan unity.

Indonesian Journal on Computing (Indo-JC), 7(3), 81-94.

[6] Sujaka, T. T., Abd Latif, K., Hadi, S., Hasbullah, H., & Hammad, R. (2022). A* Pathfinding Applications in Two-Dimensional

AI Video Games. INAJEEE (Indonesian Journal of Electrical and Electronics Engineering), 5(1), 25-29.

[7] Pratama, J. Y. (2024). Analisis Perbandingan Algoritma Dijkstra dan A-Star dalam Menentukan Rute Terpendek. JIMU: Jurnal

Ilmiah Multidisipliner, 2(03), 668-682.

[8] Aditiya, V., & Herdiana, B. (2021). Analisis Perbandingan Algoritma Breadth First Search (BFS) dan Algoritma A. Telekontran:

Jurnal Ilmiah Telekomunikasi, Kendali dan Elektronika Terapan, 9(2), 139-153.

[9] Miyombo, M. E., Liu, Y. K., Mulenga, C. M., Siamulonga, A., Kabanda, M. C., Shaba, P., ... & Ayodeji, A. (2024). Optimal path

planning in a real-world radioactive environment: A comparative study of A-star and Dijkstra algorithms. Nuclear Engineering

and Design, 420, 113039.

[10] Wicaksono, F. Y. A., Anita, A., & Oktavia, C. A. (2019). Sistem Penunjang Keputusan Penentuan Dosen Pembimbing

Menggunakan Algoritma Naive Bayes Studi Kasus STIKI Malang. J-INTECH (Journal of Information and Technology), 7(02),

109-114.

[11] Al-qerem, A., Ali, A. M., & Izneid, B. A. (2024). Investigating NPC Path Finding Behaviors with Navigation Mesh and Grid

Map Techniques. Artificial Intelligence and Economic Sustainability in the Era of Industrial Revolution 5.0, 675-688.

[12] Permatasari, S., Asikin, M., & Dewi, N. R. (2022). MaTriG: Game edukasi matematika dengan construct 3. The Indonesian

Journal of Computer Science, 11(1).

[13] Pratama, R. R., & Surahman, A. (2021). Perancangan Aplikasi Game Fighting 2 Dimensi Dengan Tema Karakter Nusantara

Berbasis Android Menggunakan Construct 2. J. Inform. dan Rekayasa Perangkat Lunak, 1(2), 234-244.

[14] Newzoo. (2023). The global games market in 2023: A new era of growth. Newzoo. Retrieved from

https://newzoo.com/resources/blog/last-looks-the-global-games-market-in-2023.

[15] SensorTower. (2023). Mobile game market growth and trends in Q1 2023. SensorTower. Retrieved from

https://sensortower.com/blog/2023-game-market

[16] Diah Arifah, P., & Daniel Rudiaman, S. (2019). Implementasi Fuzzy Sugeno Dalam Pemilihan Processor.

[17] Wahyuni, S. N., & Andiyoko, C. (2018). Pembuatan Game Berbasis Pembelajaran Menggunakan RPG Maker MV. Jurnal Mantik

Penusa, 2(2).

[18] Zhang, Cheng & Ao, Lei & Yang, Junsheng & Xie, Wenchuan. (2020). An Improved A* Algorithm Applying to Path Planning

of Games. Journal of Physics: Conference Series. 1631. 012068. 10.1088/1742-6596/1631/1/012068.

[19] Pua, G. E. (2020). Komparasi Algoritma A Star, Dijkstra dan BFS Untuk Path Finding NPC Dalam Game/Geraldin Everdin

Pua/57160405/Pembimbing: Richard Vinc N. Santoso.

[20] Pramono, S., & Verawati, I. (2024). Optimasi Performa Game Dugeon Escape Menggunakan Algoritma A-Star. Journal

Automation Computer Information System, 4(2), 136-145.

