
 

 

Iota 2025, ISSN 2774-4353, Vol.05, 02; https://doi.org/10.31763/iota.v5i2.942                 https://pubs.ascee.org/index.php/iota 

Research Article 

Content Blocking Method To Reduce False Positives Based On Machine 
Learning  
1,Andi Iksan Arkam, 2Muhammad Yahya, 3,*Abdul Wahid 

1,2,3  Department of Computer Engineering, the State University of Makassar, South Sulawesi, Indonesia 

 

   * Corresponding Author: wahid@unm.ac.id  

Abstract: This study presents an experimental approach to enhance content-blocking 
systems by integrating machine learning with domain classification and Pi-hole DNS 
server technology. While traditional blocking mechanisms often result in false 
positives—legitimate domains mistakenly blocked—this research aims to mitigate such 
issues. By implementing various testing scenarios, including TF-IDF and N-gram feature 
extraction with and without preprocessing, the study evaluates the classification 
performance using the Naive Bayes algorithm. The results reveal the highest accuracy of 
84% achieved with the N-gram method without preprocessing. This integrated approach 
shows promise in improving the precision of ad and website blocking mechanisms. 
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1. Introduction 
The increasing implementation of technology has become a necessity across various 

sectors. These sectors include education, socio-cultural affairs, politics, economics, and 
others. One of the methods used to generate the information needed by society in the 
form of high-quality and relevant data is through technology. This data can be utilized 
for personal or public purposes. However, behind the sophistication of technology 
implementation lies an opportunity for malicious actors to exploit harmful domains, such 
as phishing practices, malware distribution, and other cyberattacks. Therefore, protecting 
internet users from dangerous domains is essential. 

 
Using various techniques, cybercriminals create harmful advertisements, commonly 

referred to as malvertising, with the intent to disrupt or harm the consumers who view 
them. This is how cyber actors deliberately exploit the Internet advertising ecosystem for 
their gain (Arrate et al., 2020). Malvertising involves the distribution of malware, 
spyware, and other forms of cyberattacks through online advertisements that resemble 
legitimate ad content, potentially compromising users’ operating systems, computers, 
and personal data (Studi et al., 2023). 

 
The AdBlock method, which blocks malvertising during web browsing, can be used 

to prevent malware from spreading through ads. Although the implementation of 
AdBlock remains a topic of debate, many communities support this method by 
contributing large databases of harmful websites (Feal et al., 2021). Accidental access 
nowadays does not occur solely through keyword methods. There are other methods, 
such as using online advertisements embedded in websites, blogs, social media, games, 
and more. This is done by producers to attract consumer attention. However, not all 
embedded online advertisements contain positive elements; in fact, many contain 
negative content such as pornography, gambling, violence, and others (Sidik et al., 2023). 
Due to its ability to block tracking scripts such as AdTrack, Beacons, and Widgets 
depending on the configuration and blocking style, AdBlock is also often referred to as a 
website privacy tool. 
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Blocking ads at the DNS level is a common practice because it allows direct blocking 
of ads from the DNS in the area where the ads are located. This provides several benefits, 
such as easier network management and monitoring of activities within computer 
networks, and is expected to reduce internet advertisements with negative content and 
decrease complaints about intrusive ads when accessing websites, blogs, mobile 
applications, and other platforms (Sidik et al., 2023). Online ads that appear can be 
disruptive and are therefore blocked when users access the internet using DNS filtering. 
To prevent false positives when blocking domains, it is essential to maintain and regularly 
update a list of domains to be blocked with new entries so that ads using those domain 
names can also be stopped (Mujiastuti & Prasetyo, 2021). 

 
Content blocking methods are a proactive approach to combat harmful content by 

restricting user access while browsing the internet. However, a key challenge is the 
increased potential for false positives—cases where safe domains are mistakenly 
classified as harmful and subsequently blocked. False positives can cause inconvenience 
for users, hinder normal access, and reduce trust in the blocking system. In this context, 
machine learning-based approaches have emerged as a promising solution to reduce false 
positives in domain-blocking methods. Machine learning enables the development of 
predictive models that can understand complex patterns in domain data and support 
more accurate decision-making. 

 
This research was conducted in response to the increasing number of cyberattacks 

that exploit domains, website content, and advertisements as attack vectors—particularly 
in the form of social engineering, data theft, and ransomware distribution. Conventional 
methods, such as manually maintained blacklists or signature-based systems, often fail to 
keep pace with the rapid emergence of new threats. Therefore, machine learning-based 
approaches have become a promising solution, as they are capable of automatically 
recognizing harmful patterns and blocking malicious domains or content before they can 
harm users. 

 
In this study, a machine learning-based blocking system is developed to detect and 

classify suspicious domains or content. This method is compared with conventional 
approaches such as blacklist filters, whitelists, and heuristic rule-based systems. 
Preliminary results show that the machine learning approach achieves higher accuracy 
and demonstrates better adaptability to emerging threats. This study aims to propose and 
develop a domain-blocking method that focuses on reducing false positives through a 
machine-learning approach. By integrating advanced feature analysis and appropriate 
classification methods, the objective of this research is to create an effective model for 
detecting harmful domains without unnecessarily disrupting access to safe ones. 

 
2. Method 

This study employs an experimental research approach, which examines the effects 
of a specific treatment or intervention on the observed subject. The research focuses on ad 
domain blocking, which is performed once to prevent ads from the same domain from 
appearing again. Therefore, it is necessary to regularly update the list of blocked domains 
to ensure that newly introduced ad domains are also blocked. In addition, maintenance 
is essential to reduce false positives, which are typically caused by an algorithm 
incorrectly identifying symptoms, signals, or objects that do not exist during the domain-
blocking process. A machine learning-based approach to reducing false positives in 
domain blocking methods enables the development of predictive models capable of 
understanding complex patterns in-domain data. 
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This research was conducted at the State University of Makassar, specifically in the 
Network Computer Laboratory, located at Jalan Daeng Tata Raya, Parang Tambung 
Subdistrict, Tamalate District, Makassar City, South Sulawesi Province, 90224. The 
research period took place from November 2023 to February 2024. This study can also be 
conducted independently by the researcher, provided that the necessary facilities and 
infrastructure are fully available. 

 
2.1 Design System 

The research procedure includes the following stages: system requirements analysis, 
system design, system implementation, and system testing, The system requirements 
analysis or system design is shown in Figure 1. At this stage, an analysis is conducted to 
determine the necessary equipment required for this research, including both hardware 
and software components. 

 

Figure 1. Machine Learning and Pi-Hole System Design 

 

In Figure 1, when a client attempts to access a domain, the query is first received by 
the router and then forwarded to the ISP. The response from the ISP is returned to the 
router and subsequently passed to the Pi-Hole DNS for filtering. Pi-Hole filters the 
queries, determining which should be allowed and which should be blocked. After the 
filtering process, Pi-Hole sends the response back to the router, which then forwards it to 
the client's computer, delivering the query requested by the client. This process represents 
the implementation stage of machine learning. 

 
Figure 2 illustrates the implementation stage of machine learning, where a dataset 

consisting of domain names is collected by the researcher. The labeled domain dataset 
undergoes a preprocessing stage and is then split to objectively assess the model's 
performance. The dataset is divided into training data, which is used during the model 
training process, and validation data, which is used to test the trained model. The next 
stage involves real-time testing to observe the results of feature extraction. Model 
evaluation is then conducted to assess and measure the model's performance based on 
the collected data. 
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Figure 2. The implementation stage of machine learning 

 

 

 

Figure 3. Steps in installing the Pi-Hole system 
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Figure 3 illustrates the steps involved in installing the Pi-Hole system. First, 
download and install Ubuntu Linux, then update the Ubuntu server. Once the update is 
complete, proceed with the installation of the Pi-Hole system, which functions as a tool 
to block website domains and ads on web pages based on the domain classification 
results. The final step is to configure the MikroTik router to provide local network access 
to client computers. 

 
2.2 Data Collection 

The data collection stages in this research are carried out in several steps, including 
Observation and Testing Scenarios. The observation in this study involved directly 
observing the object to obtain a record of advertising content domains while supporting 
data was gathered by reading and studying journals, articles, and books from various 
sources such as the internet and libraries related to this research. The research was 
conducted directly in the field by testing ad blocking based on the results of the machine 
learning model. Moreover, in this study, the DNS Server system will be tested for its 
ability to block advertisements and irrelevant domains on several websites. The testing 
was carried out using the black-box testing method, meaning the system is tested based 
on its inputs and outputs without the need to understand its internal implementation 
details. Domain samples were taken from the websites kaggle.com and semrush.com. 

 
3. Result and Discussion 

The results of this study summarize the entire process that has been carried out, 
including data collection, preprocessing, feature extraction, classification, model testing, 
evaluation, and System Test Results. Each subsection in this part will outline the key 
aspects of the research and provide a comprehensive understanding of the study's 
achievements. 

 

3.1 Data Collection 

The data collection process was carried out by gathering datasets from two sources: 
secondary data and primary data. The secondary data was obtained from the websites 
www.kaggle.com and www.semrush.com, while the primary data was collected directly 
by the researcher from websites. A total of 501 data entries were gathered. The dataset 
was compiled into a single CSV file in table format and labeled according to the condition 
of each entry. The dataset consists of three categories: web, porn, and ads. Therefore, the 
dataset labels are divided into two categories: false positive (1) and not false positive (0). 

 

3.2 Preprocessing 

This study employs two scenarios in the preprocessing stage: with preprocessing and 
without preprocessing. The implementation of these two scenarios is conducted to 
compare the performance of the algorithm in the classification process with and without 
preprocessing. The collected data is then used in the model training process for the 
implementation of the Naïve Bayes algorithm. However, before proceeding to the Naïve 
Bayes implementation stage, a preprocessing step is applied to the data (Scenario 1). The 
preprocessing stage includes stop-word removal, case folding, stemming, and 
tokenization. 

 

3.3 Split Dataset 

The dataset is divided to assess the extent to which the model can be trained. The 
training data is used to train the algorithm to recognize patterns and characteristics within 
the domain dataset, which has been categorized into two classes: positive and negative. 
The testing data is used to evaluate the performance of the trained algorithm. The testing 
data serves as an independent evaluation set, where the algorithm is tested using data it 
has not encountered before. The test results are used to measure the accuracy and 
performance of the algorithm in classifying positive and negative domains. 
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3.4 Feature Extraction 
This study employs two scenarios in the feature extraction stage: one using the TF-

IDF method and the other using the N-gram method. The implementation of these two 
scenarios aims to compare the performance of the algorithm in the classification process 
by applying different feature extraction techniques. The first scenario is conducted by 
implementing the TF-IDF method in the feature extraction stage. The initial step in the 
TF-IDF feature extraction process involves importing the TfidfVectorizer class from the 
sklearn.feature_extraction.text module in the Scikit-learn library. The next step is 
converting the collection of words in each document into a numerical vector 
representation based on word frequency and inverse document frequency (IDF) 
weighting. This representation helps the algorithm classify domains as either false 
positive or negative. Figure 4.1 shows the results of the feature extraction stage using the 
TF-IDF method. 

 

  

Figure 4. Feature extraction results using the N-gram method 

 

In Figure 4 The explanation of the feature extraction results using the N-gram method is 
as follows: 
a) Each row in the output represents one N-gram entity within a specific document. 
b) The format of each row is ‘(document index, feature index) frequency value’. 
c) The document index is the identification number for a particular document in the 

dataset. 
d) The feature index refers to the index of the N-gram within the learned vocabulary. 
e) The frequency value indicates how many times the N-gram appears in that specific 

document. 
f) For example, ‘(0, 3877) 1’ means that the N-gram with index 3877 appears once in the 

first document. 

 

3.5 Classification 

The implementation stage of the Naive Bayes algorithm for classifying false positive 
and negative domains is the core phase of this research. The process begins by importing 
the MultinomialNB class from the sklearn.naive_bayes module. MultinomialNB is a class 
that represents the Naive Bayes classification model applied to data with a multinomial 
distribution, such as text data. In the next step, the Naive Bayes classification model is 
trained using the training data that has been transformed into either a TF-IDF vector 
representation or an N-gram representation. The training data comprises 80% of the entire 
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dataset. The resulting model is then used to make predictions on the testing data or new 
data that has a similar representation. 

 
The parameters used in the domain classification testing with the Naive Bayes 

architecture are as follows: 
a) Length is a parameter used to determine the length of a domain. For example, 

www.malicious-site-12345.com is more suspicious compared to a short and familiar 
domain like google.com. 

b) A subdomain is a parameter used to identify the length or number of subdomains 
that imitate legitimate domains. For example, secure-
login.bankofamerica.com.malicious.com is more suspicious than bankofamerica.com. 

c) Characters are a parameter used to examine a domain from the perspective of the 
words or numbers contained within it. For example, pay-pal-login.com is more 
suspicious than paypal.com. 

 
The Naive Bayes classification stage in this study was applied in four different 

scenarios. These scenarios involved combinations of either using or not using data 
preprocessing, along with different feature extraction methods. Specifically, the first 
scenario referred to the use of the TF-IDF feature extraction method with data 
preprocessing; the second scenario referred to the use of TF-IDF without data 
preprocessing; the third scenario involved the use of the N-gram feature extraction 
method with data preprocessing; and the fourth scenario involved the use of N-gram 
without data preprocessing. These four scenarios were implemented to evaluate the 
performance of each and to determine which scenario yielded the best results in data 
classification. 

 

3.6 Model Testing 
Model evaluation is a crucial stage that allows us to measure how well the trained 

model can generalize to data it has never seen before. The first research scenario, which 
involved using the TF-IDF feature extraction method with data preprocessing, showed 
an accuracy of 74%. Based on the evaluation results, it is necessary to improve the model’s 
accuracy by applying the second, third, and fourth scenarios. The second scenario, which 
used the TF-IDF feature extraction method without data preprocessing, showed better 
accuracy compared to the first scenario, with an accuracy of 81%. Similar results were 
observed in the third and fourth scenarios, which achieved higher accuracy than the first 
scenario, with accuracy values of 78% and 84%, respectively. 

 

3.7 Evaluation 

Model evaluation is a critical stage that allows us to measure how well the trained 
model can generalize to previously unseen data. The first research scenario, which 
involves the use of the TF-IDF feature extraction method combined with data 
preprocessing, resulted in an accuracy of 74%. Based on the evaluation results, the 
model’s accuracy needs to be improved to achieve better performance by applying the 
second, third, and fourth scenarios. 

 
The second scenario, which uses the TF-IDF feature extraction method without data 

preprocessing, showed better performance compared to the first scenario, with an 
accuracy of 81%. Similar results were observed in the third and fourth scenarios, which 
also demonstrated improved accuracy over the first scenario, with accuracy scores of 78% 
and 84%, respectively. 
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Figure 5. Accuracy of the fourth research scenario 

 

Based on Figure 5, the fourth research scenario, which refers to the use of the N-gram 
feature extraction method without data preprocessing, shows the highest accuracy 
performance compared to the others, with an accuracy of 84%. 

 
The first scenario demonstrated good performance, achieving an accuracy rate of 74% 

based on the total training dataset. This test was conducted using the TF-IDF feature 
extraction method with data preprocessing. The second scenario also showed good 
performance, with an accuracy rate of 81% from the total training dataset. This test was 
carried out using the TF-IDF feature extraction method without data preprocessing. The 
third scenario exhibited good performance as well, with an accuracy rate of 78% based on 
the total training dataset. This test involved the N-gram feature extraction method with 
data preprocessing. The fourth scenario achieved good performance, with the highest 
accuracy rate of 84% from the total training dataset. This test was conducted using the N-
gram feature extraction method without data preprocessing. These four scenarios were 
implemented to evaluate the performance of each and to determine which scenario 
yielded the best results in data classification. Moreover,m Figure 6 shows the output 
results from the machine learning model predicting domains classified as false positives 
based on the model’s predictions. 

 

 

Figure 6. Output results from the machine learning model 

 

3.8 System Test Results 

The Pi-Hole DNS Server was tested under several scenarios, including website traffic 
testing without the system using Pi-Hole and Ad-Blocker, ad-blocking tests on websites, 
and domain-blocking tests. The system was evaluated for its ability to block ads (Ad-
Blocker) and domains on several websites to determine whether the Pi-Hole DNS Server 
could successfully perform the blocking functions. 
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The ad block testing was conducted to determine whether Pi-Hole and Ad-Blocker 
are capable of blocking ads on accessed domains. The test was performed by comparing 
the same website before and after implementing Pi-Hole and Ad-Blocker. This test was 
conducted on websites that contain a large number of online advertisements, such as 
kompas.com, where ads were still displayed, as shown in the following Figure 7. 

 

 

Figure 7. The appearance of the kompas.com website without using the Pi-Hole 

 

Figure 7 shows the appearance of the kompas.com website without using the Pi-Hole 
DNS Server and before activating the AdBlocker extension. The website displays 
numerous online advertisements on the homepage, including pop-up ads, side-page ads, 
and bottom-page ads. These advertisements can disrupt the user experience while 
browsing and contribute to slower website loading times. 

 

 

Figure 8. The appearance of the kompas.com website after implementing the Pi-hole 

 

Figure 8 shows the appearance of the kompas.com website after implementing the Pi-
hole DNS Server and activating the AdBlocker extension. The website no longer displays 
advertisements on the homepage. Online ads that previously appeared as pop-ups, side-
page ads, and bottom-page ads have been removed, resulting in an unobstructed 
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browsing experience. Users accessing the website are no longer disturbed by 
advertisements, and the page loads significantly faster. 

 

 

Figure 9. The appearance of the detik.com website before activating the AdBlocker extension 

 

Figure 9 shows the appearance of the detik.com website before activating the 
AdBlocker extension. The website displays numerous online advertisements on the 
homepage, including pop-up and side-page ads. These ads can disrupt the user 
experience while browsing the site and slow down the website’s loading time. 

 

 

Figure 10. The appearance of the detik.com website after activating the AdBlocker extension 

 

Figure 10 shows the appearance of the detik.com website after activating the 
AdBlocker extension. The site still displays some advertisements on the homepage. Using 
only AdBlocker to block ads proves to be inefficient, as ads continue to appear. Users 
accessing the website are still disturbed by the presence of online advertisements. 
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Figure 11. The query log display on the Pi-Hole system 

 

Figure 11 shows the query log display on the Pi-Hole system, which presents the 
monitoring results of websites accessed by the client. It also shows an additional blocked 
query for kompas.com when the client accesses the site. This test analysis was conducted 
to compare website traffic accessed by the client, presenting the test results both without 
the system and using Pi-Hole and Ad-Blocker. The sample domains were taken from the 
website semrush.com. Below are several domains that have been analyzed based on 
traffic comparison results on the websites. 

 

 

 

Figure 12. Request Data Graph 
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Figure 12 shows a request data graph analyzing the test results of websites accessed 
without any system, with Ad-Blocker, and using Pi-Hole. It can be concluded that the Ad-
Blocker alone is not efficient in reducing the number of requests, as several domains show 
a total request count that is nearly the same without any system in place. However, when 
the Pi-Hole DNS Server is implemented, it significantly reduces the number of requests 
made when clients access a website. In the request data graph for the domain livescore.in, 
the level of effectiveness is high: Without any system, the total number of requests was 
476. When using an Ad-Blocker, the requests dropped to 239. After implementing Pi-
Hole, the total number of requests further decreased to only 204. 

 

 

Figure 13. Resource Data Transfer Graph 

 

Figure 13 shows a resource data transfer graph analyzing website testing results 
without a system, with Ad-Blocker, and using Pi-Hole. It can be concluded that the Ad-
Blocker is not efficient in reducing the amount of data transfer resources, as in several 
domains the total data transfer remains nearly the same with or without the Ad-Blocker. 
However, when the Pi-Hole DNS Server is applied, it significantly reduces the amount of 
data transferred when clients access a website. In the data transfer graph for the domain 
aurascans.com, the level of effectiveness is high: Without any system, the data transfer 
was 63.5 MB. When using an Ad-Blocker, it was reduced to 39.2 MB. After implementing 
Pi-Hole, the data transfer dropped significantly to just 11.8 MB. 

 
Figure 14 shows the load time graph analyzing the results of website testing without 

a system, with Ad-Blocker, and using Pi-Hole. It can be concluded that the Ad-Blocker is 
not efficient in reducing load time, as for several domains the total load time is almost the 
same with or without the Ad-Blocker. However, applying the Pi-Hole DNS Server can 
reduce the load time when clients access a website. In the load time graph for the domain 
gamerant.com, the effectiveness is notably high: Without any system, the load time was 
43.22 seconds. With the Ad-Blocker, the load time dropped to 5.61 seconds. After using 
Pi-Hole, the load time to load the site further decreased to just 2.74 seconds. 
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Figure 14. Load Time Graph 

The analysis of the ad-blocking test results was conducted to observe the blocking of 
ads on web pages accessed by clients, including ads on the home page, side page, bottom 
page, and pop-ups, comparing the scenarios without any system and with the use of Pi-
Hole and Ad-Blocker. The domain blocking test analysis was carried out to examine the 
effectiveness of blocking domains accessed by clients using the Pi-Hole DNS Server that 
are listed on the blacklist. Below are several domains that have been tested using the Pi-
Hole DNS Server. 

 

3.9 Discussion 
The research results demonstrate the implementation of the Naive Bayes algorithm 

for domain classification to reduce false positives. This study used domain datasets 
collected from various sources, including datasets downloaded from the website 
Kaggle.com. The dataset consisted of 360 web domain entries, 15 pornographic domain 
entries, and 126 advertising domain entries. The preprocessing process involved several 
stages such as stop-word removal, case folding, tokenization, and stemming. 

 
The preprocessing process was carried out in two scenarios: one with preprocessing 

and the other without. The research results showed that data preprocessing does not 
always improve the performance of the classification model. The scenario with 
preprocessing yielded lower accuracy rates of 74% and 78%, compared to the scenario 
without preprocessing, which achieved accuracy rates of 81% and 84%. Based on this 
data, it was concluded that in the context of domain classification, data preprocessing is 
not always necessary and may negatively affect classification performance. 

 
The next step before applying the Naive Bayes algorithm was dataset splitting, 

dividing the data into training and testing sets. The dataset was split randomly with a 
ratio of 80:20. A total of 400 data entries were used for training the model, and 100 entries 
were used for testing. Once split, the data underwent feature extraction. 

 
Feature extraction was also conducted under two scenarios: one using the TF-IDF 

method and the other using the N-gram method. The research results showed that the N-
gram method produced better classification performance than TF-IDF. The scenarios 
using the N-gram method yielded accuracy rates of 78% and 84%, while the scenarios 
using TF-IDF achieved accuracy rates of 74% and 81%. Based on this data, it was found 
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that selecting the appropriate feature extraction method significantly impacts 
classification accuracy. 

 
Following feature extraction, the classification process was conducted using the 

Naive Bayes algorithm. The classification process in this study was carried out using four 
different scenarios: 

 
1. Scenario 1: TF-IDF feature extraction with data preprocessing. 
2. Scenario 2: TF-IDF feature extraction without preprocessing. 
3. Scenario 3: N-gram feature extraction with preprocessing. 
4. Scenario 4: N-gram feature extraction without preprocessing. 

 
Scenario 1 yielded an accuracy of 74%. Scenario 2 yielded 81%. Scenario 3 achieved 

78%, while Scenario 4 achieved the highest accuracy at 84%. These results indicate that 
the best classification performance was obtained using the N-gram feature extraction 
method, particularly without preprocessing. In that scenario, classification accuracy 
reached 84%, while the best TF-IDF scenario without preprocessing yielded 81%. These 
findings suggest that for classification tasks, the N-gram method may be more suitable 
than TF-IDF and that preprocessing does not always enhance classification performance. 
Diverse methods may be needed to further improve performance. 

 
This study demonstrates that the implementation of machine learning methods in 

domain blocking systems can achieve a relatively high accuracy rate of 84%. This result 
indicates that the model is capable of effectively distinguishing between malicious and 
legitimate domains. However, the accuracy is not yet optimal, as there is still a significant 
rate of false positives and false negatives. Several challenges contribute to the limited 
accuracy, including the quality and imbalance of the training dataset, the lack of 
sufficiently representative features, and the suboptimal performance of the machine 
learning model in recognizing complex patterns associated with malicious domains. 
Additionally, the absence of contextual information—such as behavioral data or domain 
access timing—further limits the model's performance. 

 
To improve the quality and accuracy of the system, several strategic steps can be 

taken. These include expanding and balancing the dataset, developing more contextual 
features such as domain age, SSL status, and access frequency, and employing more 
advanced algorithms such as ensemble learning or deep learning techniques. Cross-
validation and careful parameter tuning are also essential to ensure the model performs 
well across different scenarios. Moreover, integrating both static and dynamic analysis 
can help reduce false positives and enhance the overall reliability of the system. With 
these efforts, the machine learning-based domain blocking system is expected to achieve 
higher accuracy and become more effective in detecting and mitigating evolving cyber 
threats. 

 
The implementation of the Pi-Hole DNS Server as an Ad-Blocker and Website 

Filtering System in a Computer Network serves to restrict access to negative content 
unrelated to academic activities on a campus network. Pi-Hole, an open-source DNS 
server application, is used to block advertisements and undesirable domains, including 
websites containing harmful content such as pornography, gambling, and dangerous 
sites. Websites often contain various types of ads, with the most common being paid 
search, paid social, and video marketing. These online ads can sometimes disrupt user 
experience. 
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Once this system is in place, Pi-Hole can block ads and domains on websites. The 
system works by filtering DNS queries from clients. Pi-Hole matches the queries with 
blacklist and whitelist entries to determine whether a query should be blocked or 
forwarded to the client. If the query is on the blacklist, the system blocks it. If it’s on the 
whitelist, it forwards the request to the service provider’s DNS server, which then returns 
the result to the client. Pi-Hole also monitors the activity logs of every device newly 
connected to the network. The system is implemented using a Mirotic RB951Ui–2HnD 
router. Before testing, a domain list was created using data from Semrush.com. These 
domains were tested both with and without the Pi-Hole DNS Server to verify whether the 
system worked as intended. Several testing scenarios were conducted, including website 
traffic tests using Pi-Hole and Ad-Blocker, ad-blocking tests, and domain-blocking tests. 

 
Based on traffic testing results, when a client accessed gamespot.com without Pi-Hole 

and Ad-Blocker, the website took longer to load and displayed ads on the homepage. 
There were 322 requests, 10.6 MB of resource data transferred, and the total load time was 
19.86 seconds. When accessing the same site using the Pi-Hole DNS Server, the total 
number of requests was reduced to 112, the data transferred was only 4.5 MB, and the 
load time was significantly faster at just 1.70 seconds, making the site more efficient. For 
ad-blocking tests, without Pi-Hole and before activating the Ad-Blocker extension, 
kompas.com displayed many online ads on the homepage, including pop-ups, side page 
ads, and bottom page ads, which were distracting and slowed down the site. After 
applying the Pi-Hole DNS Server and activating the Ad-Blocker extension, these ads were 
blocked and did not disrupt network performance. Users accessing the site experienced a 
cleaner and faster load time. 

 
In domain-blocking tests without Pi-Hole, a test on youtube.com showed that the site 

was still accessible and displayed content to the client. After implementing the Pi-Hole 
DNS Server, youtube.com was successfully blocked and the site could no longer be 
accessed because it was on the blacklist. From the analysis results, comparing traffic data 
using Chrome DevTools with and without Pi-Hole and Ad-Blocker showed that total 
requests, data transfer resources, and load time were all significantly reduced when using 
Pi-Hole. In the request analysis chart, livescore.in had high effectiveness — 476 requests 
without the system, 239 with Ad-Blocker, and only 204 with Pi-Hole. For data transfer 
resource analysis, aurascans.com was highly efficient — 63.5 MB without the system, 39.2 
MB with Ad-Blocker, and just 11.8 MB with Pi-Hole. In load time analysis, gamerant.com 
showed high efficiency — 43.22 seconds without the system, 5.61 seconds with Ad-
Blocker, and only 2.74 seconds with Pi-Hole. 

 
In ad-blocking test analysis, some whitelisted websites still showed ads on their 

homepages, which disrupted browsing activities and slowed loading, but these could be 
blocked using Ad-Blocker with Pi-Hole DNS Server. In the analysis of domain blocking 
from blacklisted sites, the results showed that the Pi-Hole DNS Server successfully 
blocked domains that had been listed. 

 

Table 1. Result of Research 

Aspect This research Previous research 

Approach Machine learning (automatic classification of 

domains and content) 

A manual approach to domain and content 

classification 

Result Medium to high, depending on training Low to high, depending on the list entered. 

Accuracy Improved with better datasets and features Depends on the completeness of the list 

Scalability Applied to high traffic in real-time Limited – performance degrades if the list is 

too long 
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4. Conclusions 
Based on the research findings, the results show that better classification performance 

is achieved using the N-gram feature extraction method, especially in scenarios without 
data preprocessing. In such scenarios, the classification accuracy reaches 84%, while in 
the best scenario using the TF-IDF method without preprocessing, the accuracy reaches 
81%. These findings indicate that for the classification task, the N-gram method can be a 
better option than the TF-IDF method, and data preprocessing does not always enhance 
classification performance. 

According to the research results, testing was carried out using several trial scenarios, 
including website traffic testing without the system using Pi-Hole and Ad-Blocker, ad-
blocking tests, and domain-blocking tests. In the website traffic test without the system 
using Pi-Hole and Ad-Blocker, Chrome DevTools was used to compare website traffic. 
This test involved observing total requests, data transfer resources, and load time—the 
total time for all website traffic when accessing the site was higher compared to after using 
Pi-Hole and Ad-Blocker. In the ad-blocking test without Pi-Hole and Ad-Blocker, ads still 
appeared on the website and slowed down the page load time. However, after using Pi-
Hole and Ad-Blocker, ads no longer appeared on the website and were successfully 
blocked. In the domain-blocking test, before implementing the Pi-Hole DNS Server, the 
website pages still displayed information accessed by the client. After implementing the 
Pi-Hole DNS Server, the website pages became inaccessible as they were included in the 
blacklist. Based on the research conducted, the implementation of Pi-Hole as a DNS 
Server in the Computer Lab was successfully carried out. The system is capable of 
blocking websites and advertisements. 
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