

Iota 2025, ISSN 2774-4353, Vol.05, 02; https://doi.org/10.31763/iota.v5i2.942 https://pubs.ascee.org/index.php/iota

Research Article

Content Blocking Method To Reduce False Positives Based On Machine
Learning
1,Andi Iksan Arkam, 2Muhammad Yahya, 3,*Abdul Wahid

1,2,3 Department of Computer Engineering, the State University of Makassar, South Sulawesi, Indonesia

 * Corresponding Author: wahid@unm.ac.id

Abstract: This study presents an experimental approach to enhance content-blocking
systems by integrating machine learning with domain classification and Pi-hole DNS
server technology. While traditional blocking mechanisms often result in false
positives—legitimate domains mistakenly blocked—this research aims to mitigate such
issues. By implementing various testing scenarios, including TF-IDF and N-gram feature
extraction with and without preprocessing, the study evaluates the classification
performance using the Naive Bayes algorithm. The results reveal the highest accuracy of
84% achieved with the N-gram method without preprocessing. This integrated approach
shows promise in improving the precision of ad and website blocking mechanisms.

Keywords: False positives, pi-hole, machine learning, domain blocking, Content Blocking

1. Introduction
The increasing implementation of technology has become a necessity across various

sectors. These sectors include education, socio-cultural affairs, politics, economics, and
others. One of the methods used to generate the information needed by society in the
form of high-quality and relevant data is through technology. This data can be utilized
for personal or public purposes. However, behind the sophistication of technology
implementation lies an opportunity for malicious actors to exploit harmful domains, such
as phishing practices, malware distribution, and other cyberattacks. Therefore, protecting
internet users from dangerous domains is essential.

Using various techniques, cybercriminals create harmful advertisements, commonly

referred to as malvertising, with the intent to disrupt or harm the consumers who view
them. This is how cyber actors deliberately exploit the Internet advertising ecosystem for
their gain (Arrate et al., 2020). Malvertising involves the distribution of malware,
spyware, and other forms of cyberattacks through online advertisements that resemble
legitimate ad content, potentially compromising users’ operating systems, computers,
and personal data (Studi et al., 2023).

The AdBlock method, which blocks malvertising during web browsing, can be used

to prevent malware from spreading through ads. Although the implementation of
AdBlock remains a topic of debate, many communities support this method by
contributing large databases of harmful websites (Feal et al., 2021). Accidental access
nowadays does not occur solely through keyword methods. There are other methods,
such as using online advertisements embedded in websites, blogs, social media, games,
and more. This is done by producers to attract consumer attention. However, not all
embedded online advertisements contain positive elements; in fact, many contain
negative content such as pornography, gambling, violence, and others (Sidik et al., 2023).
Due to its ability to block tracking scripts such as AdTrack, Beacons, and Widgets
depending on the configuration and blocking style, AdBlock is also often referred to as a
website privacy tool.

Citation: Andi Iksan Arkam,

Muhammad Yahya, & Abdul

Wahid. (2025). Content blocking

method to reduce false positives

based on machine learning. Iota,

5(2).

https://doi.org/10.31763/iota.v5i2.93

5

Academic Editor: Adi, P.D.P

Received: Maret 12, 2025

Accepted: April 23, 2025

Published: May 28, 2025

Publisher’s Note: ASCEE stays

neutral about jurisdictional claims in

published maps and institutional

affiliations.

Copyright: © 2025 by authors.

Licensee ASCEE, Indonesia. This

article is an open-access article

distributed under the terms and

conditions of the Creative Commons

Attribution-Share Alike (CC BY SA)

license(https://creativecommons.org

/licenses/by-sa/4.0/)

https://pubs.ascee.org/index.php/iota/issue/archive

Iota 2025, ISSN 2774-4353, 05, 02 420 of 435

Blocking ads at the DNS level is a common practice because it allows direct blocking
of ads from the DNS in the area where the ads are located. This provides several benefits,
such as easier network management and monitoring of activities within computer
networks, and is expected to reduce internet advertisements with negative content and
decrease complaints about intrusive ads when accessing websites, blogs, mobile
applications, and other platforms (Sidik et al., 2023). Online ads that appear can be
disruptive and are therefore blocked when users access the internet using DNS filtering.
To prevent false positives when blocking domains, it is essential to maintain and regularly
update a list of domains to be blocked with new entries so that ads using those domain
names can also be stopped (Mujiastuti & Prasetyo, 2021).

Content blocking methods are a proactive approach to combat harmful content by

restricting user access while browsing the internet. However, a key challenge is the
increased potential for false positives—cases where safe domains are mistakenly
classified as harmful and subsequently blocked. False positives can cause inconvenience
for users, hinder normal access, and reduce trust in the blocking system. In this context,
machine learning-based approaches have emerged as a promising solution to reduce false
positives in domain-blocking methods. Machine learning enables the development of
predictive models that can understand complex patterns in domain data and support
more accurate decision-making.

This research was conducted in response to the increasing number of cyberattacks

that exploit domains, website content, and advertisements as attack vectors—particularly
in the form of social engineering, data theft, and ransomware distribution. Conventional
methods, such as manually maintained blacklists or signature-based systems, often fail to
keep pace with the rapid emergence of new threats. Therefore, machine learning-based
approaches have become a promising solution, as they are capable of automatically
recognizing harmful patterns and blocking malicious domains or content before they can
harm users.

In this study, a machine learning-based blocking system is developed to detect and

classify suspicious domains or content. This method is compared with conventional
approaches such as blacklist filters, whitelists, and heuristic rule-based systems.
Preliminary results show that the machine learning approach achieves higher accuracy
and demonstrates better adaptability to emerging threats. This study aims to propose and
develop a domain-blocking method that focuses on reducing false positives through a
machine-learning approach. By integrating advanced feature analysis and appropriate
classification methods, the objective of this research is to create an effective model for
detecting harmful domains without unnecessarily disrupting access to safe ones.

2. Method

This study employs an experimental research approach, which examines the effects
of a specific treatment or intervention on the observed subject. The research focuses on ad
domain blocking, which is performed once to prevent ads from the same domain from
appearing again. Therefore, it is necessary to regularly update the list of blocked domains
to ensure that newly introduced ad domains are also blocked. In addition, maintenance
is essential to reduce false positives, which are typically caused by an algorithm
incorrectly identifying symptoms, signals, or objects that do not exist during the domain-
blocking process. A machine learning-based approach to reducing false positives in
domain blocking methods enables the development of predictive models capable of
understanding complex patterns in-domain data.

Iota 2025, ISSN 2774-4353, 05, 02 421 of 435

This research was conducted at the State University of Makassar, specifically in the
Network Computer Laboratory, located at Jalan Daeng Tata Raya, Parang Tambung
Subdistrict, Tamalate District, Makassar City, South Sulawesi Province, 90224. The
research period took place from November 2023 to February 2024. This study can also be
conducted independently by the researcher, provided that the necessary facilities and
infrastructure are fully available.

2.1 Design System

The research procedure includes the following stages: system requirements analysis,
system design, system implementation, and system testing, The system requirements
analysis or system design is shown in Figure 1. At this stage, an analysis is conducted to
determine the necessary equipment required for this research, including both hardware
and software components.

Figure 1. Machine Learning and Pi-Hole System Design

In Figure 1, when a client attempts to access a domain, the query is first received by
the router and then forwarded to the ISP. The response from the ISP is returned to the
router and subsequently passed to the Pi-Hole DNS for filtering. Pi-Hole filters the
queries, determining which should be allowed and which should be blocked. After the
filtering process, Pi-Hole sends the response back to the router, which then forwards it to
the client's computer, delivering the query requested by the client. This process represents
the implementation stage of machine learning.

Figure 2 illustrates the implementation stage of machine learning, where a dataset

consisting of domain names is collected by the researcher. The labeled domain dataset
undergoes a preprocessing stage and is then split to objectively assess the model's
performance. The dataset is divided into training data, which is used during the model
training process, and validation data, which is used to test the trained model. The next
stage involves real-time testing to observe the results of feature extraction. Model
evaluation is then conducted to assess and measure the model's performance based on
the collected data.

Iota 2025, ISSN 2774-4353, 05, 02 422 of 435

Figure 2. The implementation stage of machine learning

Figure 3. Steps in installing the Pi-Hole system

Iota 2025, ISSN 2774-4353, 05, 02 423 of 435

Figure 3 illustrates the steps involved in installing the Pi-Hole system. First,
download and install Ubuntu Linux, then update the Ubuntu server. Once the update is
complete, proceed with the installation of the Pi-Hole system, which functions as a tool
to block website domains and ads on web pages based on the domain classification
results. The final step is to configure the MikroTik router to provide local network access
to client computers.

2.2 Data Collection

The data collection stages in this research are carried out in several steps, including
Observation and Testing Scenarios. The observation in this study involved directly
observing the object to obtain a record of advertising content domains while supporting
data was gathered by reading and studying journals, articles, and books from various
sources such as the internet and libraries related to this research. The research was
conducted directly in the field by testing ad blocking based on the results of the machine
learning model. Moreover, in this study, the DNS Server system will be tested for its
ability to block advertisements and irrelevant domains on several websites. The testing
was carried out using the black-box testing method, meaning the system is tested based
on its inputs and outputs without the need to understand its internal implementation
details. Domain samples were taken from the websites kaggle.com and semrush.com.

3. Result and Discussion

The results of this study summarize the entire process that has been carried out,
including data collection, preprocessing, feature extraction, classification, model testing,
evaluation, and System Test Results. Each subsection in this part will outline the key
aspects of the research and provide a comprehensive understanding of the study's
achievements.

3.1 Data Collection

The data collection process was carried out by gathering datasets from two sources:
secondary data and primary data. The secondary data was obtained from the websites
www.kaggle.com and www.semrush.com, while the primary data was collected directly
by the researcher from websites. A total of 501 data entries were gathered. The dataset
was compiled into a single CSV file in table format and labeled according to the condition
of each entry. The dataset consists of three categories: web, porn, and ads. Therefore, the
dataset labels are divided into two categories: false positive (1) and not false positive (0).

3.2 Preprocessing

This study employs two scenarios in the preprocessing stage: with preprocessing and
without preprocessing. The implementation of these two scenarios is conducted to
compare the performance of the algorithm in the classification process with and without
preprocessing. The collected data is then used in the model training process for the
implementation of the Naïve Bayes algorithm. However, before proceeding to the Naïve
Bayes implementation stage, a preprocessing step is applied to the data (Scenario 1). The
preprocessing stage includes stop-word removal, case folding, stemming, and
tokenization.

3.3 Split Dataset

The dataset is divided to assess the extent to which the model can be trained. The
training data is used to train the algorithm to recognize patterns and characteristics within
the domain dataset, which has been categorized into two classes: positive and negative.
The testing data is used to evaluate the performance of the trained algorithm. The testing
data serves as an independent evaluation set, where the algorithm is tested using data it
has not encountered before. The test results are used to measure the accuracy and
performance of the algorithm in classifying positive and negative domains.

Iota 2025, ISSN 2774-4353, 05, 02 424 of 435

3.4 Feature Extraction
This study employs two scenarios in the feature extraction stage: one using the TF-

IDF method and the other using the N-gram method. The implementation of these two
scenarios aims to compare the performance of the algorithm in the classification process
by applying different feature extraction techniques. The first scenario is conducted by
implementing the TF-IDF method in the feature extraction stage. The initial step in the
TF-IDF feature extraction process involves importing the TfidfVectorizer class from the
sklearn.feature_extraction.text module in the Scikit-learn library. The next step is
converting the collection of words in each document into a numerical vector
representation based on word frequency and inverse document frequency (IDF)
weighting. This representation helps the algorithm classify domains as either false
positive or negative. Figure 4.1 shows the results of the feature extraction stage using the
TF-IDF method.

Figure 4. Feature extraction results using the N-gram method

In Figure 4 The explanation of the feature extraction results using the N-gram method is
as follows:
a) Each row in the output represents one N-gram entity within a specific document.
b) The format of each row is ‘(document index, feature index) frequency value’.
c) The document index is the identification number for a particular document in the

dataset.
d) The feature index refers to the index of the N-gram within the learned vocabulary.
e) The frequency value indicates how many times the N-gram appears in that specific

document.
f) For example, ‘(0, 3877) 1’ means that the N-gram with index 3877 appears once in the

first document.

3.5 Classification

The implementation stage of the Naive Bayes algorithm for classifying false positive
and negative domains is the core phase of this research. The process begins by importing
the MultinomialNB class from the sklearn.naive_bayes module. MultinomialNB is a class
that represents the Naive Bayes classification model applied to data with a multinomial
distribution, such as text data. In the next step, the Naive Bayes classification model is
trained using the training data that has been transformed into either a TF-IDF vector
representation or an N-gram representation. The training data comprises 80% of the entire

Iota 2025, ISSN 2774-4353, 05, 02 425 of 435

dataset. The resulting model is then used to make predictions on the testing data or new
data that has a similar representation.

The parameters used in the domain classification testing with the Naive Bayes

architecture are as follows:
a) Length is a parameter used to determine the length of a domain. For example,

www.malicious-site-12345.com is more suspicious compared to a short and familiar
domain like google.com.

b) A subdomain is a parameter used to identify the length or number of subdomains
that imitate legitimate domains. For example, secure-
login.bankofamerica.com.malicious.com is more suspicious than bankofamerica.com.

c) Characters are a parameter used to examine a domain from the perspective of the
words or numbers contained within it. For example, pay-pal-login.com is more
suspicious than paypal.com.

The Naive Bayes classification stage in this study was applied in four different

scenarios. These scenarios involved combinations of either using or not using data
preprocessing, along with different feature extraction methods. Specifically, the first
scenario referred to the use of the TF-IDF feature extraction method with data
preprocessing; the second scenario referred to the use of TF-IDF without data
preprocessing; the third scenario involved the use of the N-gram feature extraction
method with data preprocessing; and the fourth scenario involved the use of N-gram
without data preprocessing. These four scenarios were implemented to evaluate the
performance of each and to determine which scenario yielded the best results in data
classification.

3.6 Model Testing
Model evaluation is a crucial stage that allows us to measure how well the trained

model can generalize to data it has never seen before. The first research scenario, which
involved using the TF-IDF feature extraction method with data preprocessing, showed
an accuracy of 74%. Based on the evaluation results, it is necessary to improve the model’s
accuracy by applying the second, third, and fourth scenarios. The second scenario, which
used the TF-IDF feature extraction method without data preprocessing, showed better
accuracy compared to the first scenario, with an accuracy of 81%. Similar results were
observed in the third and fourth scenarios, which achieved higher accuracy than the first
scenario, with accuracy values of 78% and 84%, respectively.

3.7 Evaluation

Model evaluation is a critical stage that allows us to measure how well the trained
model can generalize to previously unseen data. The first research scenario, which
involves the use of the TF-IDF feature extraction method combined with data
preprocessing, resulted in an accuracy of 74%. Based on the evaluation results, the
model’s accuracy needs to be improved to achieve better performance by applying the
second, third, and fourth scenarios.

The second scenario, which uses the TF-IDF feature extraction method without data

preprocessing, showed better performance compared to the first scenario, with an
accuracy of 81%. Similar results were observed in the third and fourth scenarios, which
also demonstrated improved accuracy over the first scenario, with accuracy scores of 78%
and 84%, respectively.

Iota 2025, ISSN 2774-4353, 05, 02 426 of 435

Figure 5. Accuracy of the fourth research scenario

Based on Figure 5, the fourth research scenario, which refers to the use of the N-gram
feature extraction method without data preprocessing, shows the highest accuracy
performance compared to the others, with an accuracy of 84%.

The first scenario demonstrated good performance, achieving an accuracy rate of 74%

based on the total training dataset. This test was conducted using the TF-IDF feature
extraction method with data preprocessing. The second scenario also showed good
performance, with an accuracy rate of 81% from the total training dataset. This test was
carried out using the TF-IDF feature extraction method without data preprocessing. The
third scenario exhibited good performance as well, with an accuracy rate of 78% based on
the total training dataset. This test involved the N-gram feature extraction method with
data preprocessing. The fourth scenario achieved good performance, with the highest
accuracy rate of 84% from the total training dataset. This test was conducted using the N-
gram feature extraction method without data preprocessing. These four scenarios were
implemented to evaluate the performance of each and to determine which scenario
yielded the best results in data classification. Moreover,m Figure 6 shows the output
results from the machine learning model predicting domains classified as false positives
based on the model’s predictions.

Figure 6. Output results from the machine learning model

3.8 System Test Results

The Pi-Hole DNS Server was tested under several scenarios, including website traffic
testing without the system using Pi-Hole and Ad-Blocker, ad-blocking tests on websites,
and domain-blocking tests. The system was evaluated for its ability to block ads (Ad-
Blocker) and domains on several websites to determine whether the Pi-Hole DNS Server
could successfully perform the blocking functions.

Iota 2025, ISSN 2774-4353, 05, 02 427 of 435

The ad block testing was conducted to determine whether Pi-Hole and Ad-Blocker
are capable of blocking ads on accessed domains. The test was performed by comparing
the same website before and after implementing Pi-Hole and Ad-Blocker. This test was
conducted on websites that contain a large number of online advertisements, such as
kompas.com, where ads were still displayed, as shown in the following Figure 7.

Figure 7. The appearance of the kompas.com website without using the Pi-Hole

Figure 7 shows the appearance of the kompas.com website without using the Pi-Hole
DNS Server and before activating the AdBlocker extension. The website displays
numerous online advertisements on the homepage, including pop-up ads, side-page ads,
and bottom-page ads. These advertisements can disrupt the user experience while
browsing and contribute to slower website loading times.

Figure 8. The appearance of the kompas.com website after implementing the Pi-hole

Figure 8 shows the appearance of the kompas.com website after implementing the Pi-
hole DNS Server and activating the AdBlocker extension. The website no longer displays
advertisements on the homepage. Online ads that previously appeared as pop-ups, side-
page ads, and bottom-page ads have been removed, resulting in an unobstructed

Iota 2025, ISSN 2774-4353, 05, 02 428 of 435

browsing experience. Users accessing the website are no longer disturbed by
advertisements, and the page loads significantly faster.

Figure 9. The appearance of the detik.com website before activating the AdBlocker extension

Figure 9 shows the appearance of the detik.com website before activating the
AdBlocker extension. The website displays numerous online advertisements on the
homepage, including pop-up and side-page ads. These ads can disrupt the user
experience while browsing the site and slow down the website’s loading time.

Figure 10. The appearance of the detik.com website after activating the AdBlocker extension

Figure 10 shows the appearance of the detik.com website after activating the
AdBlocker extension. The site still displays some advertisements on the homepage. Using
only AdBlocker to block ads proves to be inefficient, as ads continue to appear. Users
accessing the website are still disturbed by the presence of online advertisements.

Iota 2025, ISSN 2774-4353, 05, 02 429 of 435

Figure 11. The query log display on the Pi-Hole system

Figure 11 shows the query log display on the Pi-Hole system, which presents the
monitoring results of websites accessed by the client. It also shows an additional blocked
query for kompas.com when the client accesses the site. This test analysis was conducted
to compare website traffic accessed by the client, presenting the test results both without
the system and using Pi-Hole and Ad-Blocker. The sample domains were taken from the
website semrush.com. Below are several domains that have been analyzed based on
traffic comparison results on the websites.

Figure 12. Request Data Graph

Iota 2025, ISSN 2774-4353, 05, 02 430 of 435

Figure 12 shows a request data graph analyzing the test results of websites accessed
without any system, with Ad-Blocker, and using Pi-Hole. It can be concluded that the Ad-
Blocker alone is not efficient in reducing the number of requests, as several domains show
a total request count that is nearly the same without any system in place. However, when
the Pi-Hole DNS Server is implemented, it significantly reduces the number of requests
made when clients access a website. In the request data graph for the domain livescore.in,
the level of effectiveness is high: Without any system, the total number of requests was
476. When using an Ad-Blocker, the requests dropped to 239. After implementing Pi-
Hole, the total number of requests further decreased to only 204.

Figure 13. Resource Data Transfer Graph

Figure 13 shows a resource data transfer graph analyzing website testing results
without a system, with Ad-Blocker, and using Pi-Hole. It can be concluded that the Ad-
Blocker is not efficient in reducing the amount of data transfer resources, as in several
domains the total data transfer remains nearly the same with or without the Ad-Blocker.
However, when the Pi-Hole DNS Server is applied, it significantly reduces the amount of
data transferred when clients access a website. In the data transfer graph for the domain
aurascans.com, the level of effectiveness is high: Without any system, the data transfer
was 63.5 MB. When using an Ad-Blocker, it was reduced to 39.2 MB. After implementing
Pi-Hole, the data transfer dropped significantly to just 11.8 MB.

Figure 14 shows the load time graph analyzing the results of website testing without

a system, with Ad-Blocker, and using Pi-Hole. It can be concluded that the Ad-Blocker is
not efficient in reducing load time, as for several domains the total load time is almost the
same with or without the Ad-Blocker. However, applying the Pi-Hole DNS Server can
reduce the load time when clients access a website. In the load time graph for the domain
gamerant.com, the effectiveness is notably high: Without any system, the load time was
43.22 seconds. With the Ad-Blocker, the load time dropped to 5.61 seconds. After using
Pi-Hole, the load time to load the site further decreased to just 2.74 seconds.

Iota 2025, ISSN 2774-4353, 05, 02 431 of 435

Figure 14. Load Time Graph

The analysis of the ad-blocking test results was conducted to observe the blocking of
ads on web pages accessed by clients, including ads on the home page, side page, bottom
page, and pop-ups, comparing the scenarios without any system and with the use of Pi-
Hole and Ad-Blocker. The domain blocking test analysis was carried out to examine the
effectiveness of blocking domains accessed by clients using the Pi-Hole DNS Server that
are listed on the blacklist. Below are several domains that have been tested using the Pi-
Hole DNS Server.

3.9 Discussion
The research results demonstrate the implementation of the Naive Bayes algorithm

for domain classification to reduce false positives. This study used domain datasets
collected from various sources, including datasets downloaded from the website
Kaggle.com. The dataset consisted of 360 web domain entries, 15 pornographic domain
entries, and 126 advertising domain entries. The preprocessing process involved several
stages such as stop-word removal, case folding, tokenization, and stemming.

The preprocessing process was carried out in two scenarios: one with preprocessing

and the other without. The research results showed that data preprocessing does not
always improve the performance of the classification model. The scenario with
preprocessing yielded lower accuracy rates of 74% and 78%, compared to the scenario
without preprocessing, which achieved accuracy rates of 81% and 84%. Based on this
data, it was concluded that in the context of domain classification, data preprocessing is
not always necessary and may negatively affect classification performance.

The next step before applying the Naive Bayes algorithm was dataset splitting,

dividing the data into training and testing sets. The dataset was split randomly with a
ratio of 80:20. A total of 400 data entries were used for training the model, and 100 entries
were used for testing. Once split, the data underwent feature extraction.

Feature extraction was also conducted under two scenarios: one using the TF-IDF

method and the other using the N-gram method. The research results showed that the N-
gram method produced better classification performance than TF-IDF. The scenarios
using the N-gram method yielded accuracy rates of 78% and 84%, while the scenarios
using TF-IDF achieved accuracy rates of 74% and 81%. Based on this data, it was found

Iota 2025, ISSN 2774-4353, 05, 02 432 of 435

that selecting the appropriate feature extraction method significantly impacts
classification accuracy.

Following feature extraction, the classification process was conducted using the

Naive Bayes algorithm. The classification process in this study was carried out using four
different scenarios:

1. Scenario 1: TF-IDF feature extraction with data preprocessing.
2. Scenario 2: TF-IDF feature extraction without preprocessing.
3. Scenario 3: N-gram feature extraction with preprocessing.
4. Scenario 4: N-gram feature extraction without preprocessing.

Scenario 1 yielded an accuracy of 74%. Scenario 2 yielded 81%. Scenario 3 achieved

78%, while Scenario 4 achieved the highest accuracy at 84%. These results indicate that
the best classification performance was obtained using the N-gram feature extraction
method, particularly without preprocessing. In that scenario, classification accuracy
reached 84%, while the best TF-IDF scenario without preprocessing yielded 81%. These
findings suggest that for classification tasks, the N-gram method may be more suitable
than TF-IDF and that preprocessing does not always enhance classification performance.
Diverse methods may be needed to further improve performance.

This study demonstrates that the implementation of machine learning methods in

domain blocking systems can achieve a relatively high accuracy rate of 84%. This result
indicates that the model is capable of effectively distinguishing between malicious and
legitimate domains. However, the accuracy is not yet optimal, as there is still a significant
rate of false positives and false negatives. Several challenges contribute to the limited
accuracy, including the quality and imbalance of the training dataset, the lack of
sufficiently representative features, and the suboptimal performance of the machine
learning model in recognizing complex patterns associated with malicious domains.
Additionally, the absence of contextual information—such as behavioral data or domain
access timing—further limits the model's performance.

To improve the quality and accuracy of the system, several strategic steps can be

taken. These include expanding and balancing the dataset, developing more contextual
features such as domain age, SSL status, and access frequency, and employing more
advanced algorithms such as ensemble learning or deep learning techniques. Cross-
validation and careful parameter tuning are also essential to ensure the model performs
well across different scenarios. Moreover, integrating both static and dynamic analysis
can help reduce false positives and enhance the overall reliability of the system. With
these efforts, the machine learning-based domain blocking system is expected to achieve
higher accuracy and become more effective in detecting and mitigating evolving cyber
threats.

The implementation of the Pi-Hole DNS Server as an Ad-Blocker and Website

Filtering System in a Computer Network serves to restrict access to negative content
unrelated to academic activities on a campus network. Pi-Hole, an open-source DNS
server application, is used to block advertisements and undesirable domains, including
websites containing harmful content such as pornography, gambling, and dangerous
sites. Websites often contain various types of ads, with the most common being paid
search, paid social, and video marketing. These online ads can sometimes disrupt user
experience.

Iota 2025, ISSN 2774-4353, 05, 02 433 of 435

Once this system is in place, Pi-Hole can block ads and domains on websites. The
system works by filtering DNS queries from clients. Pi-Hole matches the queries with
blacklist and whitelist entries to determine whether a query should be blocked or
forwarded to the client. If the query is on the blacklist, the system blocks it. If it’s on the
whitelist, it forwards the request to the service provider’s DNS server, which then returns
the result to the client. Pi-Hole also monitors the activity logs of every device newly
connected to the network. The system is implemented using a Mirotic RB951Ui–2HnD
router. Before testing, a domain list was created using data from Semrush.com. These
domains were tested both with and without the Pi-Hole DNS Server to verify whether the
system worked as intended. Several testing scenarios were conducted, including website
traffic tests using Pi-Hole and Ad-Blocker, ad-blocking tests, and domain-blocking tests.

Based on traffic testing results, when a client accessed gamespot.com without Pi-Hole

and Ad-Blocker, the website took longer to load and displayed ads on the homepage.
There were 322 requests, 10.6 MB of resource data transferred, and the total load time was
19.86 seconds. When accessing the same site using the Pi-Hole DNS Server, the total
number of requests was reduced to 112, the data transferred was only 4.5 MB, and the
load time was significantly faster at just 1.70 seconds, making the site more efficient. For
ad-blocking tests, without Pi-Hole and before activating the Ad-Blocker extension,
kompas.com displayed many online ads on the homepage, including pop-ups, side page
ads, and bottom page ads, which were distracting and slowed down the site. After
applying the Pi-Hole DNS Server and activating the Ad-Blocker extension, these ads were
blocked and did not disrupt network performance. Users accessing the site experienced a
cleaner and faster load time.

In domain-blocking tests without Pi-Hole, a test on youtube.com showed that the site

was still accessible and displayed content to the client. After implementing the Pi-Hole
DNS Server, youtube.com was successfully blocked and the site could no longer be
accessed because it was on the blacklist. From the analysis results, comparing traffic data
using Chrome DevTools with and without Pi-Hole and Ad-Blocker showed that total
requests, data transfer resources, and load time were all significantly reduced when using
Pi-Hole. In the request analysis chart, livescore.in had high effectiveness — 476 requests
without the system, 239 with Ad-Blocker, and only 204 with Pi-Hole. For data transfer
resource analysis, aurascans.com was highly efficient — 63.5 MB without the system, 39.2
MB with Ad-Blocker, and just 11.8 MB with Pi-Hole. In load time analysis, gamerant.com
showed high efficiency — 43.22 seconds without the system, 5.61 seconds with Ad-
Blocker, and only 2.74 seconds with Pi-Hole.

In ad-blocking test analysis, some whitelisted websites still showed ads on their

homepages, which disrupted browsing activities and slowed loading, but these could be
blocked using Ad-Blocker with Pi-Hole DNS Server. In the analysis of domain blocking
from blacklisted sites, the results showed that the Pi-Hole DNS Server successfully
blocked domains that had been listed.

Table 1. Result of Research

Aspect This research Previous research

Approach Machine learning (automatic classification of

domains and content)

A manual approach to domain and content

classification

Result Medium to high, depending on training Low to high, depending on the list entered.

Accuracy Improved with better datasets and features Depends on the completeness of the list

Scalability Applied to high traffic in real-time Limited – performance degrades if the list is

too long

Iota 2025, ISSN 2774-4353, 05, 02 434 of 435

4. Conclusions
Based on the research findings, the results show that better classification performance

is achieved using the N-gram feature extraction method, especially in scenarios without
data preprocessing. In such scenarios, the classification accuracy reaches 84%, while in
the best scenario using the TF-IDF method without preprocessing, the accuracy reaches
81%. These findings indicate that for the classification task, the N-gram method can be a
better option than the TF-IDF method, and data preprocessing does not always enhance
classification performance.

According to the research results, testing was carried out using several trial scenarios,
including website traffic testing without the system using Pi-Hole and Ad-Blocker, ad-
blocking tests, and domain-blocking tests. In the website traffic test without the system
using Pi-Hole and Ad-Blocker, Chrome DevTools was used to compare website traffic.
This test involved observing total requests, data transfer resources, and load time—the
total time for all website traffic when accessing the site was higher compared to after using
Pi-Hole and Ad-Blocker. In the ad-blocking test without Pi-Hole and Ad-Blocker, ads still
appeared on the website and slowed down the page load time. However, after using Pi-
Hole and Ad-Blocker, ads no longer appeared on the website and were successfully
blocked. In the domain-blocking test, before implementing the Pi-Hole DNS Server, the
website pages still displayed information accessed by the client. After implementing the
Pi-Hole DNS Server, the website pages became inaccessible as they were included in the
blacklist. Based on the research conducted, the implementation of Pi-Hole as a DNS
Server in the Computer Lab was successfully carried out. The system is capable of
blocking websites and advertisements.

Acknowledgments: This research was made possible with the support of Makassar State University

through the provision of valuable facilities and resources. Their support and encouragement played

a significant role in the success of this research.

Author contributions: The authors are responsible for building Conceptualization, Methodology,

analysis, investigation, data curation, writing—original draft preparation, writing—review and

editing, visualization, supervision of project administration, funding acquisition, and have read and

agreed to the published version of the manuscript.

Funding: The study was conducted without any financial support from external sources.

Availability of data and Materials: All data are available from the authors.

Conflicts of Interest: The authors declare no conflict of interest.

Additional Information: No Additional Information from the authors.

References
[1] Abdurrahman, O., & dkk (2022). Penerapan PI HOLE DNS Server sebagai ADS - Blocker dan sistem filtering website pada

jaringan hotspot. Jurnal Media Infotama, 18(2), 208-217.

[2] Akbar, A. P (2022). Metode block access serta memanejemen bandwith pada Mikrotik Rb951ui dan Mikrotik Rb 941-2ND di

Caffe Ready Jombang Jawa Timur. Jurnal Teknologi Dan Sistem Informasi Bisnis, 4(2), 398-406.

[3] Ali, I. S., Hamza, S., Gunawan, E., & Halim, F(2020). Implementasi & analisis penerapan pi-hole network ad-blocking di

Laboratorium Jaringan Teknik Informatika UMMU. Jurnal Teknologi Informatika, 27-31.

[4] Alvaro Feal (2021) . Blocklist babel: On the transparency and dynamics of open source blocklisting. IEEE Transactions on

Network and Service Management. doi 10.1109/TNSM.2021.3075552,

[5] Apriyatna, M., & Zulfikar, A. F (2023). Analisis dan implementasi network adblocking pi-hole di Raspberry Pi 4 menggunakan

OPNSense DHCP dengan metode PPDIOO (Studi kasus DiskominfoSP Kabupaten Lebak). Jurnal Ilmu Komputer dan Science,

2(2), 575-582.

[6] Chazar, C., & Widhiaputra, B. E (2020). Machine learning diagnosis kanker payudara menggunakan algoritma support vector

machine. Informasi (Jurnal Informatika dan Sistem Informasi), 12(1), 67-80.

Iota 2025, ISSN 2774-4353, 05, 02 435 of 435

[7] Farmadiansyah, A. Z (2021). Deteksi surel spam dan non-spam bahasa indonesia menggunakan metode naive bayes.

Skripsi.Yogyakarta: Universitas Islam Indonesia.

[8] Feal, A., Vallina, P., Gamba, J., Pastrana, S., Nappa, A., Hohlfeld, O., Vallina-Rodriguez, N., & Tapiador, J. (2021). Blocklist

Babel: On the Transparency and Dynamics of Open Source Blocklisting. IEEE Transactions on Network and Service

Management, 18(2), 1334–1349. https://doi.org/10.1109/TNSM.2021.3075552

[9] Husen, Z., & Surbakti, M. S (2020). Membangun server dan jaringan komputer dengan Linux Ubuntu. Skripsi. Aceh: Syiah

Kuala University.

[10] Inayah, K., & Ramli, K. (2024). Analisis Kinerja Intrusion Detection System Berbasis Algoritma Random Forest Menggunakan

Dataset Unbalanced Honeynet BSSN. Jurnal Teknologi Informasi Dan Ilmu Komputer, 11(4), 867–876.

https://doi.org/10.25126/jtiik.1148911

[11] Mujiastuti, R., & Prasetyo, I (2021). Membangun sistem keamanan jaringan berbasis VPN yang terintegrasi dengan DNS

Filtering PIHOLE. Jurnal Universitas Muhammadiyah Jakarta, 1-10.

[12] Mulyana, D. I., Ardiyansyah, F., Hidayat, N., & Zulfikar, A. (2024). Optimasi Keamanan Jaringan Wifi dari Situs Judi Online

dan Pornografi dengan DNS Filtering dan Orangepi. MALCOM: Indonesian Journal of Machine Learning and Computer

Science, 4(2), 647–655. https://doi.org/10.57152/malcom.v4i2.1274

[13] Munawar, Z., & Putri, N. I (2020). Keamanan jaringan komputer pada era big data. J-SIKA: Jurnal Sistem Informasi Karya Anak

Bangsa, 2(01), 14-20.

[14] Nursiyono, J. A., & Huda, Q (2023). Analisis sentimen twitter terhadap perlindungan data pribadi dengan pendekatan machine

learning. Jurnal Pertahanan dan Bela Negara, 13(1), 1-16.

[15] Prasetya, Hanif, H., & Handaga, B (2023). Implementasi pemanfaatan Pi-Hole sebagai DNS Server Pada Rumah untuk

memonitoring traffic internet dan memblokir iklan. Jurnal Universitas Muhammadiyah Surakarta, 1-16.

[16] Rahman, M (2023). Implementasi web content filtering pada jaringan RT/RW Net menggunakan Pi-Hole DNS Server. Jurnal

Generation Journal, 50-60.

[17] Satriawan, D., & Trisnawan, P. H (2021). Implementasi layanan dns sinkhole sebagai pemblokir iklan menggunakan arsitektur

cloud. Jurnal Informatika, 67-75.

[18] Sidik, F., Maryati, M., & Abdullah, A. (2023). Implementasi Dns (Domain Name System) Adblocker Menggunakan Raspberry

Pi 4 Pada Politeknik Piksi Input Serang. Jurnal Gerbang STMIK Bani Saleh, 13(1),60–73.

[19] Studi, P., Multimedia, T., Jaringan, D. A. N., Teknik, J., Dan, I., & Jakarta, P. N. (2023). Program studi teknik multimedia dan

jaringan jurusan teknik informatika dan komputer politeknik negeri jakarta 2023

[20] Suryanto, & Permadi, F. A (2019). Optimalisasi internet hotspot menggunakan user manajemen pada Pusat Pengembangan

SDM Asuransi Indonesia. Jurnal Infortech, 1, 60-61.

[21] W, Y., Fitriana, Y. B., Susanto, A., Susanto, E. S., Hamdani, F., Rizky, M., & Oper, N (2022). Implemetasi filtering alamat website

pada web proxy menggunakan Raspberry-Pi. Jurnal Pengembangan IT, 55-61.

[22] Wibawa, A. P., Purnama, M. G., Akbar, M. F., & Dwiyanto, F. A. 2018. Metode-metode klasifikasi. Prosiding Seminar Ilmu

Komputer dan Teknologi Informasi. 3, pp. 134-138.

[23] Widiatmoko, C (2022). Rancang bangun secure mobile router dan sistem pemblokiran konten iklan dan kostumisasi domain

berbasis raspberry pi 3b+. Disertasi. Jakarta. Politeknik Negeri Jakarta.

[24] Wuhi, A. U., Hariadi, F., & Uly, N. B. (2024). Implementasi Web Filtering Firewall Untuk Mendukung Internet Sehat Di Smp

Negeri 4 Mauliru (Implementation Of Web Filtering Firewall To Support a Healthy Internet At SMP Negeri 4 Mauliru). 3(1),

43–52.

[25] Zakariah, M. A., Afriani, V., & Zakariah, K. M (2020). Metodologi penelitian kualitatif, kuantitatif, action research, research

and development (R n D). Jurnal Penelitian. Kolaka: Yayasan Pondok Pesantren Al Mawaddah Warrahmah.

