

Iota 2025, ISSN 2774-4353, Vol.05, 02; https://doi.org/10.31763/iota.v5i2.963 https://pubs.ascee.org/index.php/iota

Research Article

Implementation of Synchronous Messaging with Visual Basic as a
Support for Learning the Parallel and Distributed Systems Course
1,*Muhammad Romi Nasution, 2Basorudin

1,2 Department of Information Systems, Faculty of Computer Science, Pasir Pengaraian University, Riau, Indonesia

 * Corresponding Author: m.romi.nst@upp.ac.id

Abstract: There are two types of message delivery, namely synchronous and
asynchronous messages. Synchronous communication refers to communication that
occurs directly and simultaneously, where both parties interact in real-time. Common
examples of synchronous communication in online learning include video conferencing,
web conferencing, and live chat. Asynchronous communication, which is indirect, allows
for more flexible learning through tools such as discussion forums, emails, and blogs. In
this article, a chatting application will be designed and built as part of the implementation
of the parallel and distributed systems course to support student learning. The
application was built using Visual Basic software with important supporting components
such as Winsock, TCP/IP protocol, and Local Port, to communicate directly
(synchronously) between the client and server. From the test results of conducting
chatting between the server and client, it can be concluded that the application runs well
as expected without any errors, with an error rate of 0% and a success accuracy rate of
100%. For future researchers, this application can be used as teaching material in the
parallel and distributed systems course, and can be developed with other models and the
latest software, for example, not only sending messages but also sending files such as
images and the like. This research approach can look at multiple sides, for example, from
AI-Enhanced Communication, Hybrid Legacy-Modern Integration, Adaptive Protocol
Switching, Dynamic Key Exchange, Auto-Discovery Port Management, ML-Optimized
UI Components, Context-Aware UX, Predictive Load Balancing, Behavioral Pattern
Analysis, AI-Assisted Bug Detection, QoE Assessment Model, dan Open Source
Framework.

Keywords: Client-Server, TCP/IP Protocol, Synchronous, Visual Basic, Resource-

constrained Environments, AI-Enhanced Communication

1. Introduction
In the continuously evolving era of digitalization, technology has become an

important actor in various fields of our lives, one of which is in the field of education. One
of the significant developments in the world of education is the application of technology
to support learning. Technical and concept-based courses such as "Parallel and
Distributed Systems" often require deep understanding and innovative learning
approaches to help students grasp complex material. In the research by Indra Riyana
Rahadjeng et al. (2022), it is explained that chat applications are usually used for chatting
activities conducted by two or more people, either offline or over the internet. In the
current era, chatting applications are rapidly evolving. In chatting applications, they are
not only used for sending text messages, but chatting activities today can also be used to
send various types of emoticons, image messages, files, data, audio messages, and even
video messages. [1].

Citation: Nasution, M. R., &

Basorudin. (2025). Implementation

of synchronous messaging with

Visual Basic as a support for

learning the Parallel and

Distributed Systems course. Iota,

5(2).

https://doi.org/10.31763/iota.v5i2.96

3

Academic Editor: Adi, P.D.P

Received: Maret 22, 2025

Accepted: April 25, 2025

Published: June 11, 2025

Publisher’s Note: ASCEE stays

neutral about jurisdictional claims in

published maps and institutional

affiliations.

Copyright: © 2025 by authors.

Licensee ASCEE, Indonesia. This

article is an open-access article

distributed under the terms and

conditions of the Creative Commons

Attribution-Share Alike (CC BY SA)

license(https://creativecommons.org

/licenses/by-sa/4.0/)

Iota 2025, ISSN 2774-4353, 05, 02 493 of 509

Figure 1. Message Transaction on Server-Client [7].

There are two types of message delivery, namely synchronous and asynchronous

messages. Synchronous communication refers to communication that occurs directly and
simultaneously, where both parties interact in real time. Common examples of
synchronous communication in online learning include video conferencing, web
conferencing, and live chat. Asynchronous communication, which is indirect, allows for
more flexible learning through tools such as discussion forums, email, and blogs. [2].
Visual Basic, or more commonly known as VB, is a programming language developed by
Microsoft.

Furthermore, first released in 1991, VB is part of the software development

environment commonly referred to as Visual Studio. VB is designed to facilitate the
development of Windows-based applications by providing an intuitive graphical
interface. One of the main advantages of Visual Basic is its ease of use, especially for
developers who are just starting out. [3]. In this article, a chat program or application will
be designed and built as part of the implementation of the parallel and distributed
systems course to support student learning. The application is built using Visual Basic
software with essential supporting components such as Winsock, TCP/IP protocol, and
Local Port, to communicate directly (synchronously) between the client and server.

Previous research conducted by Bambang Kelana Simpony (2017). Explains the

importance of using WinSock in the development of socket-based applications for more
reliable and secure network communication, as well as providing an understanding of
how to build chat and messaging applications using TCP as the basic protocol [4].
Meanwhile, the function of the TCP/IP Protocol is used for communication between
computers in a network, providing stability and efficiency in data transmission. [5]. In the
course on parallel and distributed systems, one of the topics discussed is message
exchange conducted synchronously and asynchronously. However, this research focuses
solely on the implementation of synchronous message exchange. Therefore, this study
aims to implement synchronous messaging, one of which is by building a chat application
with the help of Visual Basic software. This application will be based on Client-Server
architecture, with the expected outcome being that the application on the client can
communicate with the application on the server in real-time.

The transfer of data and information through a network is very feasible to implement,

as it can certainly accelerate and facilitate the process of data or information exchange.
For example, the transfer of data and information carried out by a host or client is shown
to the server. [6]. Figure 1 shows an example of Message Transmission on Server-Client,
which consists of three basic components, i.e., Client and Server Process, and Resource,
which consists of four activities, i.e., 1. Client Sent Request, 2. The server handles the
request, 3. The server sends a response, and 4. Client handles response.

Every application on the network has its transactions based on the client-server

concept. A server and a client, or several clients, request services from the server. The
server's function is to manage the clients connected to it, in other words, to manage the
existing resources, which will provide services by utilizing resources for the needs of the

Iota 2025, ISSN 2774-4353, 05, 02 494 of 509

connected clients. [7]. The research conducted by Ripo Saputra et al. (2023) discusses a
chat application that has been integrated with security using Classic Cryptography in its
encoding. This research has been successfully developed, and the chat application will be
safer if the process of sending and receiving messages includes data encryption. [8].
Another chatting application that has been developed by previous researchers is a multi-
user chatting application, where the file transfer facility in the software can make
communication between one user and another more effective, efficient, and practical, and
can support users in completing their tasks. [9].

Besides being used as a chatting application, Visual Basic can also be used to design

alarm programs. This research was successfully created by Andi Dwi Riyanto (2008). This
alarm application can be applied as a reminder for schedules and agendas when someone
is busy working or sitting in front of a computer. This alarm software is very helpful for
its users in managing schedules and agendas in daily life, for example, as a reminder for
waking up, study time, class time, and so on. [10]. The expected solution in this research
is to design and build a chatting application, so that the development of this application
will provide a learning solution, especially very useful for lecturers teaching parallel and
distributed systems courses.

2. Method

In this research, the steps to be taken include preparing Visual Basic software to build
a real-time chatting application. The components used are the TCP/IP protocol, local port,
and several important components such as label, textbox, listbox, commandbutton, and
Microsoft Winsock. Figure 2 shows the chart of the research methodology to be
developed. This research can be developed comprehensively as shown in the
development approach in Figure 3.

Figure 2. Research Methodology

Iota 2025, ISSN 2774-4353, 05, 02 495 of 509

Figure 3. Approach to the development of research methodology

The Chat Platform as shown in Figure 3, has been integrated with Hybrid Legacy-

Modern Integration as shown in Research (S. K. K L, S. M, S. A, S. J. U and V. S. P V. 2023),
(S. Tirpude., et.al. 2024), Visual Basic development has led to a more flexible platform and
can be applied to mobile applications such as research on the development of WhatsApp
and LINE Chat. (S. Yaqub, et.al. 2024), (Y. Mitarai, et.al., 2023), (K. V. Rajkumar, et.al.,
2024), (R. Leila, et.al., 2024), (V. A., S. LSS., et.al., 2025), (J. N. Singh, et.al., 2024). A Chat
feature for conducting conversation analysis on Higher Education Students has also been
developed and analyzed. And also other comprehensive research, do development from
the platform side, analysis from Chat comprehensively (Y. U. Chandra and S.
Ardiyansyah, 2023), (S. Singh, et.al., 2023, R. Rajasekar, et.al, 2023, Y. -A. Hsieh and N. -
C. Tai, 2023, A. Seufert, et.al., 2023, N. Nie, et.al., 2023, R. Srishti Gulecha, et.al., 2023, M.
M. Rovnyagin, et.al., 2024).

The methodology that will be developed in this research can be explained as follows:
The first stage is preparing Visual Basic software to build a real-time chatting application.
This software is chosen because of its ease in software development, especially for

Iota 2025, ISSN 2774-4353, 05, 02 496 of 509

creating chatting applications by implementing components provided by Visual Basic
itself. The second stage is the use of the TCP/IP Protocol, which serves as the basis for
communication between computers in the network. This ensures stable and efficient
communication between the client and server in the chat application. The third stage uses
local port 8080, which will be used to ensure smooth communication between the client
and server. This port allows connections to be opened between the two applications
(client and server) on the network. The next stage is to implement the necessary
components. These components are used to build the application interface and handle
message delivery. The final stage, which is the most important, is the input screen or
coding, which will ensure whether the designed application can run as expected or
receive an error message.

(a)

(b)

Figure 4. (a, b) Client Application Design

 Furthermore, from Figures 4a and b, the design is the same, but what distinguishes
them is the caption. For example, on CommandButton 1 on the server, it is labeled
"Listen," while on the client, it is labeled "Connect." Moreover, Table 1 is the Component
Properties of the Server, while Table 2 is the Component Properties in the Client. Tables
1 and 2 can be explained that the component name column refers to the components used

Iota 2025, ISSN 2774-4353, 05, 02 497 of 509

for application design, both server and client, while the name column is the property
name that must be input according to the name of the component used, and the caption
is used as the variable name for each component. The script used for the server can use
the VB.NET code, which is described as follows the Pseudocode.

Table 1. Component Properties on the Server

No Component Name (Name) Caption / Text Action

1 Label Label 1 IP Address -

2 Label Label 2 Local Port -

3 TextBox TxtServerIP - -

4 TextBox TxtServerPort - -

5 CaommandButton CmdListen Listen -

6 CaommandButton CmdStop Stop -

7 CaommandButton cmdClear Clear Chat -

8 CaommandButton cmdExit Exit -

9 Label LblStatus Server is Closed… -

10 ListBox ListChat - -

11 TextBox TxtMsg - -

12 CaommandButton CmdSend Send -

13 Label Label3 Copyright@2025 -

14 Winsock wskServer -
(Protocol) 0-

sckTCPProtocol

Table 2. Properties Components on Client

No Component Name (Name) Caption / Text Action

1 Label Label 1 Server IP -

2 Label Label 2 Server Port -

3 TextBox TxtServerIP - -

4 TextBox TxtServerPort - -

5 CaommandButton CmdConenct Connect -

6 CaommandButton CmdDisconect Disconenct -

7 CaommandButton cmdClear Clear Chat -

8 CaommandButton cmdExit Exit -

9 Label LblStatus Ready to Connect… -

10 ListBox ListChat - -

11 TextBox TxtMsg - -

12 CaommandButton CmdSend Send -

13 Label Label3 Copyright@2025 -

14 Winsock wskClient -
(Protocol) 0-

sckTCPProtocol

Iota 2025, ISSN 2774-4353, 05, 02 498 of 509

Moreover, it is necessary to describe each component of the Socket Communication
System in Pseudocode. Which consists of Main Program Structure, Server Side
Operations, and components as detailed in the script.

Socket Communication System Pseudocode 1

Main Program Structure
DECLARE server socket

DECLARE client list

DECLARE user interface components (text fields, buttons, list box)

DECLARE connection status variables

Server Side Operations
Initialize Server
FUNCTION InitializeServer():

 SET server local port = user input port

 CREATE server socket

 SET server.Enabled = False

 SET connection listener enabled = False

 SET stop enabled = True

 DISPLAY "Server initialized"

END FUNCTION

Start Listening for Connections
FUNCTION StartListening():

 IF server state = connected THEN

 SET server.Listen()

 SET connection listener enabled = False

 SET stop enabled = False

 ADD TO chat list: "Server listening on port " + port

 SEND DATA through server socket

 SET message text = empty

 END IF

END FUNCTION

Handle Client Connection Request
FUNCTION HandleConnectionRequest(requestID):

 CLOSE server socket

 ACCEPT connection request with requestID

 SET status caption = "Connected to Client"

 ADD TO chat list: "Successfully Connected to Client..."

END FUNCTION

Handle Data Arrival from Client
FUNCTION HandleDataArrival(bytesTotal):

 GET DATA from server socket into message variable

 DISPLAY client message in events list: "<Client> " + message

END FUNCTION

Handle Server Errors
FUNCTION HandleServerError(errorNumber, description, source,

helpFile, helpContext):

 IF error is critical THEN

Iota 2025, ISSN 2774-4353, 05, 02 499 of 509

 DISPLAY error message: "Fatal Error on connection. Check

IP Address/Port, try again"

 SET status = "Error"

 END IF

END FUNCTION

Client Side Operations
Load and Initialize Client
FUNCTION LoadClient():

 SET server IP text = local server IP

 SET server IP enabled = False

 SET server port text = default port

 SET stop enabled = False

END FUNCTION

Handle Server State Changes
FUNCTION HandleServerStateChange():

 IF server state = closed THEN

 CLOSE server connection

 SET connection listener click enabled = False

 SET stop enabled = False

 ADD TO chat list: "Waiting for Connection..."

 ADD TO chat list: "Disconnected..."

 END IF

END FUNCTION

Connect to Server
FUNCTION ConnectToServer():

 CLOSE any existing connections

 SET server.Accept request ID

 SET status caption = "Connected to Client"

 ADD TO chat list: "Successfully Connected to Client..."

END FUNCTION

Common Communication Functions
Send Message
FUNCTION SendMessage():

 IF connection is established THEN

 GET message from input field

 SEND message through socket

 ADD TO chat list: "<Server/Client> " + message

 CLEAR input field

 ELSE

 DISPLAY "Not connected" error

 END IF

END FUNCTION

Close Connection
FUNCTION CloseConnection():

 IF socket is connected THEN

 CLOSE socket connection

 SET status = "Disconnected from Client/Server"

 ADD TO chat list: "Disconnected..."

 RESET connection controls

Iota 2025, ISSN 2774-4353, 05, 02 500 of 509

 END IF

END FUNCTION

Event Handlers
Button Click Events
FUNCTION OnConnectButtonClick():

 CALL InitializeServer()

 CALL StartListening()

END FUNCTION

FUNCTION OnSendButtonClick():

 CALL SendMessage()

END FUNCTION

FUNCTION OnStopButtonClick():

 CALL CloseConnection()

END FUNCTION

Socket Event Handlers
FUNCTION OnConnectionRequest(requestID):

 CALL HandleConnectionRequest(requestID)

END FUNCTION

FUNCTION OnDataArrival(bytesTotal):

 CALL HandleDataArrival(bytesTotal)

END FUNCTION

FUNCTION OnError(errorNumber, description, source, helpFile,

helpContext):

 CALL HandleServerError(errorNumber, description, source,

helpFile, helpContext)

END FUNCTION

Main Program Flow
BEGIN MAIN PROGRAM

 INITIALIZE user interface

 INITIALIZE socket components

 SET default values for server IP and port

 ENABLE appropriate controls based on initial state

 WHILE application is running:

 LISTEN for user input events

 HANDLE socket events as they occur

 UPDATE user interface accordingly

 END WHILE

 ON APPLICATION EXIT:

 CLOSE all socket connections

 CLEANUP resources

END MAIN PROGRAM

Iota 2025, ISSN 2774-4353, 05, 02 501 of 509

Error Handling Strategy
FOR ALL socket operations:

 TRY:

 EXECUTE socket operation

 CATCH connection errors:

 DISPLAY appropriate error message

 RESET connection state

 ENABLE reconnection controls

 CATCH data transmission errors:

 LOG error details

 ATTEMPT to maintain connection

 END TRY-CATCH

Pseudocode Client Application or Pseudocode 2

Variable Declarations

DECLARE svIP As String

DECLARE svPort As String

DECLARE txtChat As String

DECLARE msg As String

DECLARE wskClient As WinsockClient

DECLARE TxtServerPort As TextBox

DECLARE TxtServerIP As TextBox

DECLARE TxtMsg As TextBox

DECLARE LblStatus As Label

DECLARE ListChat As ListBox

DECLARE CmdConnect As Button

DECLARE CmdDisconnect As Button

Event Handlers

1. Clear Button Click Event

PROCEDURE cmdClear_Click()

 CLEAR ListChat items

END PROCEDURE

2. Connect Button Click Event

PROCEDURE cmdConnect_Click()

 SET svPort = TxtServerPort.Text

 SET svIP = TxtServerIP.Text

 CALL wskClient.Close()

 SET wskClient.RemoteHost = svIP

 SET wskClient.RemotePort = svPort

 CALL wskClient.Connect()

 SET TxtServerPort.Enabled = False

 SET TxtServerIP.Enabled = False

 SET CmdConnect.Enabled = False

 SET CmdDisconnect.Enabled = True

 SET LblStatus.Caption = "Connecting to Server..."

END PROCEDURE

Iota 2025, ISSN 2774-4353, 05, 02 502 of 509

3. Disconnect Button Click Event

PROCEDURE cmdDisconnect_Click()

 CALL wskClient.Close()

 SET LblStatus.Caption = "Disconnected to Server"

 SET TxtServerPort.Enabled = True

 SET TxtServerIP.Enabled = True

 SET CmdConnect.Enabled = True

 SET CmdDisconnect.Enabled = False

 ADD "Disconnected..." TO ListChat

END PROCEDURE

4. Exit Button Click Event

PROCEDURE cmdExit_Click()

 END APPLICATION

END PROCEDURE

5. Send Button Click Event

PROCEDURE CmdSend_Click()

 SET msg = TxtMsg.Text

 IF wskClient.State = sckConnected THEN

 ADD "<Client> " + msg TO ListChat

 SEND msg TO wskClient

 CALL DoEvents()

 SET TxtMsg.Text = ""

 ELSE

 ADD "---Not Connected to Server---" TO ListChat

 END IF

END PROCEDURE

6. Form Load Event

PROCEDURE Form_Load()

 SET TxtServerPort.Text = "8080"

 SET TxtServerIP.Text = wskClient.LocalIP

 SET CmdDisconnect.Enabled = False

END PROCEDURE

7. Client Close Event

PROCEDURE wskClient_Close()

 IF wskClient.State <> sckClosed THEN

 SET LblStatus.Caption = "Connected to Server"

 ADD "---Succesfully Connected to Server---" TO ListChat

 END IF

END PROCEDURE

8. Data Arrival Event

PROCEDURE wskClient_DataArrival(ByVal bytesTotal As Long)

 CALL wskClient.GetData(msg)

 ADD "<Server> " + msg TO ListChat

 CALL DoEvents()

END PROCEDURE

Iota 2025, ISSN 2774-4353, 05, 02 503 of 509

9. Error Event Handler

PROCEDURE wskClient_Error(ByVal number As Integer, description

As String, ByVal scode As Long, ByVal source As String, ByVal

helpfile As String, ByVal helpcontext As Long, cancelDisplay As

Boolean)

 DISPLAY "Could Not Connect to Server !!!" + vbCrLf + "Error"

END PROCEDURE

Main Program Flow

BEGIN PROGRAM

 INITIALIZE Form

 INITIALIZE Controls

 ENABLE Connect Button

 DISABLE Disconnect Button

 SET Default Server Port = "8080"

 SET Default Server IP = Local IP

 WAIT FOR User Events:

 - Connect Button Click

 - Disconnect Button Click

 - Send Button Click

 - Clear Button Click

 - Exit Button Click

 - Network Events (Data Arrival, Connection Close,

Errors)

END PROGRAM

3. Results and Analysis

The result of this research is a chatting application that will allow communication
between the server and client.

Figure 5. Chatting Client Application Design

Iota 2025, ISSN 2774-4353, 05, 02 504 of 509

Figure 6. Client Chatting Application Design

Figures 5 and 6 are applications that have been designed and created, as explained in
the descriptions of Figures 5 and 6. The difference between the server and client side lies
in the name and caption. In terms of design, these applications are the same, but in terms
of functionality, they have their respective roles. For example, in Figure 8, the left side of
the image is the server and the right side is the client.

Figure 7. The chat process from server to client and vice versa

Figure 7 shows that the application built is running as expected or functioning well
and can communicate with each other synchronously or in real-time. The sentence typed
on the server is sent to the client:

<server> Assalamualaikum, this is a chatting application

designed for real-time communication.

<client> Waalaikumsalam, Alhamdulillah we can easily

communicate in real-time.

 <server> true

<client> Good

Iota 2025, ISSN 2774-4353, 05, 02 505 of 509

4. Discussion
System development in this research can be developed towards Resource-constrained

Environments, or in terms of a more comprehensive context, it can also focus on Hybrid
Systems, Cross-Cultural Distributed Learning. In terms of evaluation and development
of analysis, it can add a Learning Analytics Dashboard, Performance Prediction Model,
Social Network Analysis, and Cognitive Load Assessment. When viewed from various
Innovative Pedagogical aspects, some sample research developments are on
Gamification-Driven, which integrates game mechanics elements, a collaborative
Problem-Solving Framework, which is a collaborative problem-solving-based learning
approach, building learning systems between students, such as peer-to-peer knowledge
Exchange and Microlearning-based or learning in small modules.

Figure 8. Resource-Constrained Environment Analysis for Synchronous Messaging,

specifically on Throughput Degradation with CPU Load

Figure 9. Resource-Constrained Environment Analysis for Synchronous Messaging,

specifically on Latency Increase with Memory Pressure

Iota 2025, ISSN 2774-4353, 05, 02 506 of 509

Figure 10. Resource-Constrained Environment Analysis for Synchronous Messaging, specifically

on Scalability Performance

Figure 11. Resource-Constrained Environment Analysis for Synchronous Messaging, specifically

on Resource Efficiency Heatmap

Furthermore, in the approach to the Resource-Constrained Environment, there are
several analyses that need to be deepened, among others, this Messaging System will
cause these three parameters, namely Throughput Calculation, Latency Modeling, and
Success Rate. Moreover, Throughput is based on CPU, Memory, and Bandwidth, while
Latency is based on contention considerations between processes, and success rate is
determined by packet loss simulation under stress conditions.

Iota 2025, ISSN 2774-4353, 05, 02 507 of 509

Figure 12. Resource-Constrained Environment Analysis for Synchronous Messaging,

specifically on System Reliability vs Resource Pressure

Figure 13. Resource-Constrained Environment Analysis for Synchronous Messaging,

specifically on Network Bandwidth Impact

Figure 8 to 13 shows a comprehensive visualization of the Throughput vs CPU usage
condition which shows performance degradation, then on the Latency vs Memory
Pressure side is an attempt to increase delay when memory is high, then from the
Scalability Analysis side which shows the performance side per process when scaling,
then Resource Efficiency Heatmap which shows resource combination optimization, then
Success Rate vs Resource Stress which shows System Reliability, and Bandwidth Impact
which shows Diminishing Returns from network Speed. And Performance Metrics
consisting of Resource Efficiency, Critical Thresholds, and Correlation Analysis. So that
an approach to Intelligent Recommendations emerges consisting of optimal CPU usage

Iota 2025, ISSN 2774-4353, 05, 02 508 of 509

<75%, Memory Pressure <80%, Load Balancing for >16 processes, and Network
bandwidth sweet spot ~ 50 Mbps. And the key insights generated are Performance
Degradation Pattern, Resource Contention, Network Optimization, and Scalability Limit.

5. Conclusion and Future Research

From the results of the trial by conducting chatting between the server and client, it
can be concluded that the application built meets the expectations, in other words, the
application runs well without experiencing any errors at all, with an error rate of 0%, and
a success accuracy rate of 100%. For future researchers, it is hoped that with the
development of this application, it can be used as teaching material for teachers and
lecturers in the course on parallel and distributed systems, and can be further developed
with other models and the latest software, for example, not only sending messages but
also being able to send files such as images and the like. This research approach can look
at multiple sides, for example, from AI-Enhanced Communication, Hybrid Legacy-
Modern Integration, Adaptive Protocol Switching, Dynamic Key Exchange, Auto-
Discovery Port Management, ML-Optimized UI Components, Context-Aware UX,
Predictive Load Balancing, Behavioral Pattern Analysis, AI-Assisted Bug Detection, QoE
Assessment Model, dan Open Source Framework.

Acknowledgments: Thanks to the entire research team, and all the people in the Department of

Information System, Faculty of Computer Science, Pasir Pengaraian University, Riau, who have

helped the author in completing this research, hopefully this research can be maximally useful and

applied, especially in the development of novelty research, such as AI-Enhanced Communication,

and other parameters that have novelty value.

Author contributions: The authors are responsible for building Conceptualization, Methodology,

analysis, investigation, data curation, writing—original draft preparation, writing—review and

editing, visualization, supervision of project administration, funding acquisition, and have read and

agreed to the published version of the manuscript.

Funding: The study was conducted without any financial support from external sources.

Availability of data and Materials: All data are available from the authors.

Conflicts of Interest: The authors declare no conflict of interest.

Additional Information: No Additional Information from the authors.

References
[1] I. R. Rahadjeng, M. N. H. Siregar, and A. P. Windarto, (2022). “Pemanfaatan Sistem Keputusan Dalam Mengevaluasi Penentuan

Aplikasi Chatting Terbaik Dengan Multi Factor Evaluation Process,” vol. 6. ISSN 2614-5278 (media cetak), ISSN 2548-8368

(media online) Available Online at https://ejurnal.stmik-budidarma.ac.id/index.php/mib DOI: 10.30865/mib.v6i2.4021.

[2] Mohamad Firdaus, Indra Bakti, (2024) Perancangan dan Pembuatan Desain Aplikasi OPNAME dengan Visual Basic

Menggunakan Metode UML.” Journal on Pustaka Cendekia Informatika Volume 1 No. 3, Januari-Maret 2024, pp 169-178.

[3] W. A. Prabowo and S. N. Hutagalung, “Perancangan Aplikasi Penyandian Pesan Chat Client dan Server Berdasarkan

Algoritma Spritz,” vol. 7, no. 3, 2020.

[4] M. Kannangara, C. Rajapakse, D. Asanka and N. Jayalath, "Development of a Chat Assistant Using Large Language Models

for Personalized Mathematics Tutoring to Overcome Educational Disparities in Sri Lanka," 2025 5th International Conference

on Advanced Research in Computing (ICARC), Belihuloya, Sri Lanka, 2025, pp. 1-6, doi: 10.1109/ICARC64760.2025.10963323.

[5] S. K. K L, S. M, S. A, S. J. U and V. S. P V, "Video Chat using WebRTC with In-built Sign Language Detection," 2023 Third

International Conference on Ubiquitous Computing and Intelligent Information Systems (ICUIS), Gobichettipalayam, India,

2023, pp. 167-170, doi: 10.1109/ICUIS60567.2023.00036.

[6] S. Tirpude, Y. Thakre, S. Sudan, S. Agrawal, and A. Ganorkar, "Mining Comments and Sentiments in YouTube Live Chat Data,"

2024 4th International Conference on Intelligent Technologies (CONIT), Bangalore, India, 2024, pp. 1-6, doi:

10.1109/CONIT61985.2024.10626352.

Iota 2025, ISSN 2774-4353, 05, 02 509 of 509

[7] S. Yaqub, S. Gochhait, H. A. H. Khalid, S. N. Bukhari, A. Yaqub and M. Abubakr, "WhatsApp Chat Analysis: Unveiling Insights

through Data Processing and Visualization Techniques," 2024 ASU International Conference in Emerging Technologies for

Sustainability and Intelligent Systems (ICETSIS), Manama, Bahrain, 2024, pp. 862-865, doi:

10.1109/ICETSIS61505.2024.10459604.

[8] Y. Mitarai, A. Mutoh, K. Shima, K. Moriyama, T. Matsui, and N. Inuzuka, "Automatic Construct of Communication Structures

in LINE Group Chat," 2023 IEEE 12th Global Conference on Consumer Electronics (GCCE), Nara, Japan, 2023, pp. 310-313, doi:

10.1109/GCCE59613.2023.10315557.

[9] K. V. Rajkumar, N. Jayasree, L. V. Kommireddi, Y. Rayudu, M. Ikramuddin, and P. K. Aouti, "Voice Chat - Bringing Chats to

Life Using Deep Learning," 2024 9th International Conference on Communication and Electronics Systems (ICCES),

Coimbatore, India, 2024, pp. 2001-2006, doi: 10.1109/ICCES63552.2024.10860258.

[10] R. Leila, P. Tazhibayeva, I. Abulkhair, D. Pogolovkin and K. Yelzhas, "Development of a Chat History Analysis Module Using

Advanced Machine Learning Models and Vector Databases for Digital Forensic Tools," 2024 International Conference on

Modeling, Simulation & Intelligent Computing (MoSICom), Dubai, United Arab Emirates, 2024, pp. 490-495, doi:

10.1109/MoSICom63082.2024.10882040.

[11] V. A, S. LSS, H. TS, K. Jaspin, A. K. Selvaraj, and N. D. M, "Visualization of Hidden Patterns in WhatsApp Chat Using

Sentimental Analysis," 2025 3rd International Conference on Intelligent Data Communication Technologies and Internet of

Things (IDCIoT), Bengaluru, India, 2025, pp. 8-13, doi: 10.1109/IDCIOT64235.2025.10914980.

[12] J. N. Singh, Y. Kumar, A. Srivastava, D. Baghel, and K. Al-Attabi, "WhatsApp Chat Analyzer," 2024 1st International Conference

on Advances in Computing, Communication and Networking (ICAC2N), Greater Noida, India, 2024, pp. 78-83, doi:

10.1109/ICAC2N63387.2024.10895439.

[13] Y. U. Chandra and S. Ardiyansyah, "Analysis of the Use of E-Stickers in Chat Conversations for Higher Education Students,"

2023 International Conference on Information Management and Technology (ICIMTech), Malang, Indonesia, 2023, pp. 413-417,

doi: 10.1109/ICIMTech59029.2023.10277862.

[14] S. Singh, S. Singh and A. Sharma, "Real-Time Secure Web-Based Chat Application using Django," 2023 5th International

Conference on Advances in Computing, Communication Control and Networking (ICAC3N), Greater Noida, India, 2023, pp.

1560-1565, doi: 10.1109/ICAC3N60023.2023.10541532.

[15] R. Rajasekar, T. Shreya, P. Sandya, V. S. S. Reddy and B. Deepak, "Active Chat Monitoring and Detection Over Internet," 2023

7th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 2023, pp. 949-954, doi:

10.1109/ICICCS56967.2023.10142690.

[16] Y. -A. Hsieh and N.-C. Tai, "An Expressive Chat Room with Personalized Fonts Mimicking Actual Inconsistencies in Human

Handwriting," 2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan), PingTung, Taiwan, 2023, pp.

197-198, doi: 10.1109/ICCE-Taiwan58799.2023.10227039.

[17] A. Seufert, C. Baur, F. Poignée, M. Seufert and T. Hoßfeld, "Sitting, Chatting, Waiting: Influence of Loading Times on Mobile

Instant Messaging QoE," 2024 16th International Conference on Quality of Multimedia Experience (QoMEX), Karlshamn,

Sweden, 2024, pp. 100-103, doi: 10.1109/QoMEX61742.2024.10598245.

[18] N. Nie, H. Guo, and W. Song, "Authenticity Classification of WeChat Group Chat Messages Based on LDA and NLP," 2024 9th

International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), Chengdu, China, 2024, pp. 313-319, doi:

10.1109/ICCCBDA61447.2024.10569975.

[19] R. Srishti Gulecha, K. Muthu Reshmi, and S. Abirami, "Exploratory Data Analysis of WhatsApp group chat," 2023 12th

International Conference on Advanced Computing (ICoAC), Chennai, India, 2023, pp. 1-6, doi:

10.1109/ICoAC59537.2023.10250143.

[20] M. M. Rovnyagin, D. M. Sinelnikov, A. A. Eroshev, T. A. Rovnyagina, and A. V. Tikhomirov, "Optimizing Cache Memory

Usage Methods for Chat LLM-models in PaaS Installations," 2024 Conference of Young Researchers in Electrical and Electronic

Engineering (ElCon), Saint Petersburg, Russian Federation, 2024, pp. 277-280, doi: 10.1109/ElCon61730.2024.10468250.

